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74. Note on the Mean Value of V(f). 1I

By Saburé UCHIYAMA
Mathematical Institute, Tokyo Metropolitan University, Tokyo
(Comm. by Z. SUETUNA, M.J.A., June 13, 1955)

1. Let GF(q) denote a finite field of order ¢g=p". In the following
we shall consider polynomials of the form
1.1) J@)=2"+p_ "+ - t+ax (a, € GF(q)),
where 1<n<p, and the number V(f) of distinet values f(x),
x e GF(q). L. Carlitz [1]° has proved that we have
(1.2) S nHz=L >q

ay EGF(Q) 2¢9—1

where the summation is over the coefﬁclent of the first degree term
in flx). It is also known [2] that

a9 SO=30 (Lo
or
(1.4) SV =eg+0@ ),

where the summation on the left-hand side of (1.8) or (1.4) is over
all polynomials of degree n of the form (1.1) and
(1.5) —1—L+ L1 L
3! n!

In fact, the sum on the left-hand side of (1.8) is equal to the

number of distinet polynomials, of degree n,
f@)y=2"+dan_ 2" '+ - - +a,x+a, (a; € GF(Q))

having at least one linear polynomial factor in GF'[q,x]. In this
point of view the relation (1.8) is almost obvious.?

2. The purpose of this note is to prove the following

Theorem. We have

2.1) % V(f)=Q"d§=nV(f) +R,, (1<n<p),

where the summation on the left-hand side is over the coefficients a,,
Ggye v vy An_py 0 fl) and

_ 0 of r=1,
Bor={ ogm if ros.

with 9=1——%~. In particular, if n=r@+1) then
2.2) %7 V(f)=cg" "+ 0@ "),
where ¢, is the number given by (1.5).

1) Numbers in brackets refer to the references at the end of this note.

2) Thus we may get a simple proof of (1.3). The idea was suggested to the author
by K. Takeuchi.



