74. Note on the Mean Value of $\mathrm{V}(\mathrm{f})$. II

By Saburô Uchiyama
Mathematical Institute, Tokyo Metropolitan University, Tokyo
(Comm. by Z. Suetuna, m.J.A., June 13, 1955)

1. Let $G F(q)$ denote a finite field of order $q=p^{\nu}$. In the following we shall consider polynomials of the form

$$
\begin{equation*}
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x \quad\left(a_{j} \in G F(q)\right), \tag{1.1}
\end{equation*}
$$

where $1<n<p$, and the number $V(f)$ of distinct values $f(x)$, $x \in G F(q)$. L. Carlitz $[1]^{1)}$ has proved that we have

$$
\begin{equation*}
\sum_{a_{1} \in G H^{\prime}(q)} V(f) \geqq \frac{q^{3}}{2 q-1}>\frac{q^{2}}{2}, \tag{1.2}
\end{equation*}
$$

where the summation is over the coefficient of the first degree term in $f(x)$. It is also known [2] that

$$
\begin{equation*}
\sum_{\text {deg } f=-n} V(f)=\sum_{r=1}^{n}(-1)^{r-1}\binom{q}{r} q^{n-r} \tag{1.3}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{\mathrm{deg} j=n} V(f)=c_{n} q^{n}+O\left(q^{n-1}\right), \tag{1.4}
\end{equation*}
$$

where the summation on the left-hand side of (1.3) or (1.4) is over all polynomials of degree n of the form (1.1) and

$$
\begin{equation*}
c_{n}=1-\frac{1}{2!}+\frac{1}{3!}-\cdots+(-1)^{n-1} \frac{1}{n!} . \tag{1.5}
\end{equation*}
$$

In fact, the sum on the left-hand side of (1.3) is equal to the number of distinct polynomials, of degree n,

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \quad\left(a_{j} \in G F(q)\right)
$$

having at least one linear polynomial factor in $G F[q, x]$. In this point of view the relation (1.3) is almost obvious.2)
2. The purpose of this note is to prove the following

Theorem. We have

$$
\begin{equation*}
\sum_{(r)} V(f)=q^{-r} \sum_{\operatorname{deg} \mid=n} V(f)+R_{n, r} \quad(1<n<p), \tag{2.1}
\end{equation*}
$$

where the summation on the left-hand side is over the coefficients a_{1}, a_{2}, \ldots, a_{n-r-1} in $f(x)$ and

$$
R_{n, r}=\left\{\begin{array}{cl}
0 & \text { if } r=1 \\
O\left(q^{\theta n}\right) & \text { if } r \geqq 2
\end{array}\right.
$$

with $\theta=1-\frac{1}{r}$. In particular, if $n \geqq r(r+1)$ then

$$
\begin{equation*}
\sum_{(r)} V(f)=c_{n} q^{n-r}+O\left(q^{n-r-1}\right), \tag{2.2}
\end{equation*}
$$

where c_{n} is the number given by (1.5).

[^0]
[^0]: 1) Numbers in brackets refer to the references at the end of this note.
 2) Thus we may get a simple proof of (1.3). The idea was suggested to the author by K. Takeuchi.
