101. On the Group of Conformal Transformations of a Riemannian Manifold

By Shigeru ISHIHARA and Morio OBATA Tokyo Metropolitan University (Comm. by K. KUNUGI, M.J.A., July 12, 1955)

Let M be a connected and differentiable Riemannian manifold of dimension $n(\geq 3)$ with the fundamental metric tensor field G. A differentiable homeomorphism φ of M onto M is called a *conformal* transformation if $(\varphi G)_p = \rho(p)G_p$ at every point p of M where ρ is a positive function on M determined by φ and called the *associated* function of φ . If in particular the function ρ is constant, φ is called a homothetic transformation. And if furthermore $\rho=1$ at every point of M, φ is said to be an *isometric transformation* or *isometry*.

We denote by K(M), H(M), and I(M) the group of all conformal transformations, that of all homothetic ones and that of all isometries of M respectively. It is then clear that we have $K(M) \supset H(M) \supset I(M)$. As is well known a conformal transformation leaves invariant the Weyl's conformal curvature tensor field C of M.

Now we denote by $K_p(M)$ the group of isotropy of K(M) at a point p of M. If $\varphi \in K_p(M)$, φ induces a linear transformation $\tilde{\varphi}$ on the tangent vector space T_p at p. This correspondence $\varphi \to \tilde{\varphi}$ is a linear representation¹⁾ of $K_p(M)$ onto $\tilde{K}_p(M)$ which is a subgroup of the homothetic group H(n) of T_p . If in particular $\tilde{K}_p(M)$ is contained in the orthogonal group O(n) of T_p , p is called to be an *isometric point*. If $\tilde{K}(M)$ is not contained in O(n) p is called to be an *isometric point*.

If $\tilde{K}_{p}(M)$ is not contained in O(n), p is said a homothetic point.

We shall first establish

THEOREM 1. The conformal curvature tensor field C of M vanishes at any homothetic point.

This theorem will be obtained as a corollary to the following lemma.

LEMMA. Let V be an n-dimensional vector space over the real number field and $\tilde{\varphi}$ a homothetic transformation which is not an orthogonal one. If a tensor S of type (p,q), $p \neq q$, is invariant by $\tilde{\varphi}$, then S is the zero tensor.

PROOF. We regard S as a multilinear mapping of $V \times \cdots \times V \times V^* \times \cdots \times V^*$

$$\frac{p}{p}$$
 $\times \cdots \times \frac{p}{q}$

1) In general this linear representation is not faithful.