121. Some Trigonometrical Series. XVI

By Shin-ichi IZUMI

Mathematical Institute, Tokyo Metropolitan University, Tokyo (Comm. by Z. SUETUNA, M.J.A., Oct. 12, 1955)

N. Wiener [1] proposed the problem to find the condition of the convergence of the series

(1)
$$\sum_{n=1}^{\infty} |s_n(x) - f(x)|,$$

and

(2)
$$\sum_{n=1}^{\infty} (s_n(x) - f(x))^2$$
,

where $s_n(x)$ is the *n*th partial sum of Fourier series of f(x). The uniform convergence of (2) was treated in [2].

The object of this paper is to find the condition of almost everywhere convergence of the series

$$(3) \qquad \qquad \sum_{n=1}^{\infty} |s_n(x) - f(x)|^{\lambda}.$$

In the case $\lambda = 1$, that is, in (1) T. Tsuchikura [3] has gotten the condition by the Fourier coefficients of f(x). We prove the following

Theorem. Let p > 1, $p \ge \lambda \ge 1$, and ε be any positive number. If f(x) is of the power series $type^{1}$ and

$$(4) \qquad \left(\int_{0}^{2\pi} |f(x+t) - f(x)|^{p} dx\right)^{1/p} \leq At^{1/\lambda} / \left(\log \frac{1}{t}\right)^{(1+\varepsilon)/\lambda}$$

then the series (3) converges almost everywhere.

In the proof we use the technic due to A. Zygmund [4] and his lemma:

Lemma. Suppose that p > 1 and

$$||\sum_{\nu=m}^n \gamma_{\nu} e^{i\nu x}||_p \leq C$$

where $|| ||_p$ denotes the L^p-norm and suppose that

$$|\lambda_{\nu}| \leq M$$
, $\sum_{\nu=m}^{n-1} |\lambda_{\nu} - \lambda_{\nu+1}| \leq M$,

then

$$||\sum_{\nu=m}^{n}\gamma_{\nu}\lambda_{\nu}e^{i\nu x}||_{p}\leq A_{p}MC.$$

Let us now prove the theorem. It is sufficient to prove that the series

(5)
$$\sum_{n=1}^{\infty} \int_{0}^{2\pi} |s_n(x) - f(x)|^{\lambda} dx$$

is convergent. Then

1) This condition is implied by (4) when $\lambda > 1$.