56. On Semi-reducible Measures. II

By Tadashi ISHII

Department of Mathematics, Ehime University, Japan (Comm. by Z. SUETUNA, M.J.A., April 12, 1956)

In this note we show that main results concerning semi-reducibility of Baire (Borel) measures, which have been proved by Marczewski and Sikorski [5] in metric spaces, and by Katětov [4, Theorem 1] and the present author [3, Theorem 4] in paracompact spaces, are valid in completely regular spaces with a complete structure.¹⁾ The case of two-valued measures has already been considered by Shirota [6], though his result is related to Q-spaces of Hewitt [1]. We use the same notations as in the previous paper [3]: $\mathfrak{B}^*(X)=$ all of Baire subsets in a T-space X, C(X, R)=all of real-valued continuous functions on $X, P(f)=\{x|f(x)>0, f \in C(X, R)\}, \mathfrak{P}(X)=\{P(f)|f \in C(X, R)\}.$

All spaces considered are completely regular spaces and all measures considered are finite measures, unless the contrary is explicitly stated.

Lemma 1. If any closed discrete subset in a T_1 -space X has the power of (two-valued) measure $0,^{2}$ then for any (two-valued) Baire measure μ in X, the union of a discrete collection of open subsets $\{G_a \mid G_a \in \mathfrak{P}(X), \mu(G_a)=0\}$ has also μ -measure $0.^{3}$

Since the proof is essentially stated in the previous paper [3, Theorem 4], we do not repeat it here.

Lemma 2. Let $\mathfrak{U} = \{U_a \mid a \in A\}$ be a normal covering of a T-space X. Then there exists a refinement $\mathfrak{V} = \{G_{na} \mid a \in A, n=1, 2, \cdots\}$ of \mathfrak{U} such that $\{G_{na} \mid a \in A\}$ is a discrete collection with $G_{na} \in \mathfrak{P}(X)$ for each n.

Proof. Let $\mathfrak{l} = \{U_{\alpha} \mid \alpha \in A\}$ be a normal covering of X and let $\{\mathfrak{l}_n\}$ be a normal sequence such that $\mathfrak{l}_1 > \mathfrak{l}_2 > \cdots > \mathfrak{l}_n > \cdots$. Then, as Stone [7] has showed, there exists a closed covering $\{F_{n\alpha} \mid \alpha \in A, n=1, 2, \cdots\}$ satisfying the following conditions:

- i) $S(F_{n\alpha}, \mathfrak{U}_{n+3}) \cap S(F_{n\gamma}, \mathfrak{U}_{n+3}) = \phi$ if $\alpha \neq \gamma$,
- ii) $\{F_{n\alpha} \mid \alpha \in A\}$ is a discrete collection for each n,

3) A collection $\{H_{\alpha} \mid a \in A\}$ of subsets of a *T*-space is called discrete if (1) the closures \overline{H}_{α} are mutually disjoint, (2) $\bigcup_{\beta \in B} \overline{H}_{\beta}$ is closed for any subset *B* of *A*.

¹⁾ A measure μ defined on a σ -field \mathfrak{B} containing Baire family in a *T*-space is called semi-reducible if there exists a closed subset Q such that (1) $\mu(G)>0$ holds if G is open, $G \in \mathfrak{B}$, $G \frown Q \neq \phi$, and (2) $\mu(F)=0$ holds if F is closed, $F \in \mathfrak{B}$, $F \frown Q = \phi$.

²⁾ A discrete set is called to have the power of (two-valued) measure 0, if every (two-valued) measure, defined for all subsets and vanishing for all one point, vanishes identically.