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Our Ny, D,q) is increasing with respect to m. We define
the value of N(z,q) at a minimal point » by liILl Ny,cXD, @) denoted

by N(p,q). If p or q belongs to R, this definition is equivalent to
that defined before.

If V.(p) is not regular, we define Ny,.,Xp, @) by im Ny, (P, @),

where m’<m and V,,(p) is regular. In the case when V,(p) is reg-
ular, it is proved that Nm Ny, @)=Ny,m(p,q), hence we can

define Ny, Q) for every m<sup N(z,p)=M'. As in case of a
ZER
Riemann surface with a null-boundary, we can prove the following

Theorem 10. 1) N(z,q) (g€ R) is 8-lower semicontinuous in R
+ B,.

2) N(z,q) is superharmonic in weak sense at every point of R
+ B,

8) If p and q are in R+ B,, then N(p,q)=N(q, p).
Till now N, q) (geR) is defined only on R+ B,. Next
we define N(z, 9) at points belonging to B, If peB, N({,D)

= f N(z, p)du(p,) (v, € B) by Theorem 8. Although the uniqueness

of thlS mass distribution is not proved by the present author, the
value of N(z,q) in R+ B, is uniquely determined. On the other hand,
by 3), for g € B,, N(p,, ¢)=N(q, p,). Hence it is quite natural to define

the value of N(z,q) at p ¢ B, by f N(p,, Q)du(p,). Evidently by 3),

in such definition, we have N(q, »)=N(p, ¢), where the term of the
right hand side does not depend on a particular distribution but on
the behaviour of N(z,q), because N(p, q)=lin,11 Ny oD, @) and

Ny D, @) is defined by the value of N(z,q) on OV,(p). As for the
behaviour of N(z,q) (¢ € R), we have the following
Theorem 11. 1) If qe¢ R+ B,, then N(p,q)=N(q, p) for peR.

2) If qe R and pe R+B,, then N(p,q)= f N(p, g.)dp(q.), where
N, 0= [N, a.du(ae).
8) N(z,q) (qeR) is -lower semicontinuous in E.



