54. Evans-Selberg's Theorem on Abstract Riemann Surfaces with Positive Boundaries. II

By Zenjiro KURAMOCHI

Mathematical Institute, Osaka University (Comm. by K. KUNUGI, M.J.A., April 12, 1956)

Our $N_{V_m(p)}(p,q)$ is increasing with respect to m. We define the value of N(z,q) at a minimal point p by $\lim_{m \to M'} N_{V_m(p)}(p,q)$ denoted by N(p,q). If p or q belongs to R, this definition is equivalent to that defined before.

If $V_m(p)$ is not regular, we define $N_{V_m(p)}(p,q)$ by $\lim_{m' \to m} N_{V_m'(p)}(p,q)$, where m' < m and $V_{m'}(p)$ is regular. In the case when $V_m(p)$ is regular, it is proved that $\lim_{m' \to m} N_{V_m'(p)}(p,q) = N_{V_m(p)}(p,q)$, hence we can define $N_{V_m(p)}(p,q)$ for every $m < \sup_{z \in R} N(z,p) = M'$. As in case of a Riemann surface with a null-boundary, we can prove the following

Theorem 10. 1) N(z,q) $(q \in \overline{R})$ is δ -lower semicontinuous in $R + B_1$.

2) N(z,q) is superharmonic in weak sense at every point of $R + B_1$.

3) If p and q are in $R+B_1$, then N(p,q)=N(q,p).

Till now N(z, q) $(q \in \overline{R})$ is defined only on $R + B_1$. Next we define N(z, q) at points belonging to B_0 . If $p \in B_0$, $N(z, p) = \int_{B_1} N(z, p_a) d\mu(p_a)$ $(p_a \in B_1)$ by Theorem 8. Although the uniqueness of this mass distribution is not proved by the present author, the value of N(z, q) in $R + B_1$ is uniquely determined. On the other hand, by 3), for $q \in B_1$, $N(p_a, q) = N(q, p_a)$. Hence it is quite natural to define the value of N(z, q) at $p \in B_0$ by $\int N(p_a, q) d\mu(p_a)$. Evidently by 3), in such definition, we have N(q, p) = N(p, q), where the term of the right hand side does not depend on a particular distribution but on the behaviour of N(z, q), because $N(p, q) = \lim_{m \to M'} N_{V_m(p)}(p, q)$ and $N_{V_m(p)}(p, q)$ is defined by the value of N(z, q) on $\partial V_m(p)$. As for the behaviour of N(z, q) $(q \in \overline{R})$, we have the following

Theorem 11. 1) If $q \in R + B_1$, then N(p,q) = N(q,p) for $p \in \overline{R}$. 2) If $q \in \overline{R}$ and $p \in R + B_1$, then $N(p,q) = \int N(p,q_a) d\mu(q_a)$, where $N(z,q) = \int N(z,q_a) d\mu(q_a)$.

3) $\check{N}(z,q) \ (q \in \overline{R})$ is δ -lower semicontinuous in \overline{R} .