52. Contribution to the Theory of Semi-groups. II

By Kiyoshi ISÉKI

Kobe University

(Comm. by K. Kunugi, M.J.A., April 12, 1956)

Any compact semi-group contains at least one idempotent. This theorem has been proved by some writers (cf. K. Iséki [2], Th. 3).

Let E be the set of all idempotents e_{α} of a given compact semi-group S, then E is non-empty.

If $e_{\alpha}e_{\beta}=e_{\alpha}$ for e_{α} , $e_{\beta} \in E$, we shall write $e_{\alpha} \leq e_{\beta}$. The order relation \leq defines a quasi-order on E. If E is commutative, then E is a partial order set relative to the order.

In this Note, we shall first extend a result of S. Schwarz [3]. We shall first prove that

$$\mathfrak{R} = \bigcap_{e_{\alpha} \in E} Se_{\alpha}S$$

is non-empty. By the compactness of S, each $Se_{\alpha}S$ is closed. For any finite $e_{\alpha_1}, e_{\alpha_2}, \dots, e_{\alpha_k}$, we have

$$e_{\alpha_1} \cdot e_{\alpha_2} \cdot \dots \cdot e_{\alpha_k} \in Se_{\alpha_1}S \cdot Se_{\alpha_2}S \cdot \dots \cdot Se_{\alpha_k}S$$

$$\subseteq Se_{\alpha_1}S \cap Se_{\alpha_2}S \cap \dots \cap Se_{\alpha_k}S.$$

Therefore, $Se_{a_1}S \cap Se_{a_2}S \cap \cdots \cap Se_{a_k}S$ is non-empty, and $\mathfrak N$ is non-empty. It is clear that $\mathfrak N$ is a closed two-sided ideal, and hence $\mathfrak N$ is a compact semi-group. For $a \in \mathfrak N$, SaS is a closed ideal of $\mathfrak N$. The compact semi-group SaS contains an idempotent e. Therefore $SeS \subseteq SaS \subseteq \mathfrak N \subseteq SeS$. Hence $SaS = SeS = \mathfrak N$, for any e and any idempotent e of $\mathfrak N$. $\mathfrak N = SaS$ is a closed minimal two-sided ideal.

Thus, this fact shows that there is a closed minimal two-sided ideal in S.

If S is a compact homogroup in the sense of G. Thierrin [4], then S contains a compact group and two-sided ideal m of S. Therefore, $\mathfrak{R} \subset m$. As any group does not contain proper ideal, $\mathfrak{R} = m$. Therefore, \mathfrak{R} is a compact group. Hence \mathfrak{R} contains only one idempotent e, which is the unit element of \mathfrak{R} . Let e' be an idempotent of S, then, by the definition of \mathfrak{R} , $\mathfrak{R} \subseteq \mathfrak{R} e' \mathfrak{R} \subseteq \mathfrak{R}$. Hence $ee'e \in \mathfrak{R}$. Since S is a homogroup, e is permutable with any element of S. Hence ee'e=ee' and ee' is an idempotent. Therefore ee'=e and this shows $e\leq e'$. So we can state the following

Theorem 1. Any compact homogroup has a unique least idempotent.*

^{*)} Theorem 1 is proved without the assumption of compactness.