76. On the *s*-weak Topology of W*-algebras

By Shôichirô SAKAI

Mathematical Institute, Tôhoku University, Sendai, Japan (Comm. by K. KUNUGI, M.J.A., May 15, 1956)

1. Preliminaries. The author [5] had shown that the σ -weak topology of W^* -algebras is free from the adjoint operation as follows:

Theorem A. Suppose that a C*-algebra M is the adjoint space of a Banach space F, then it is a W*-algebra and the topology $\sigma(M, F)$ of M is the σ -weak topology.

This will suggest that the following question is affirmative: Suppose that ϕ is an algebraic isomorphism (not necessarily adjoint preserving) of a W*-algebra onto another. Then, can we conclude that ϕ is σ -weakly bicontinuous?

The purpose of this paper is to prove this in a more general form $(\S 2, \text{ Theorem } 2)$.

2. Theorems. Let M be a C^* -algebra, M^* the adjoint space of M.

Definition. A subspace V of M^* is said invariant, if $f \in V$ implies f_a , ${}_bf \in V$ for any $a, b \in M$, where $f_a(x) = f(xa)$ and ${}_bf(x) = f(bx)$.

Theorem 1. Let V be an invariant subspace of M^* which is everywhere $\sigma(M^*, M)$ -dense in M^* , then $V \cap S$ is everywhere $\sigma(M^*, M)$ -dense in S, where S is the unit sphere of M^* .

Proof. Put $T_a f = f_a$ for $f \in V$, then T_a is a linear operator on the normed space V and moreover $||T_a f|| = \sup_{||x||| \le 1} |f(xa)| \le ||f|| |||a|||$;

hence $||T_a|| \leq |||a|||$, where $||T_a||$ is the operator norm of T_a .

Suppose that $T_a=0$, then $(T_af)(x)=f(xa)=0$ for all $f \in V$ and $x \in M$. Since V is everywhere $\sigma(M^*, M)$ -dense in M^* , xa=0 for all $x \in M$; hence a=0. Moreover $T_{ab}=T_aT_b$ and so the mapping $a \to T_a$ is an isomorphism; hence by the minimality of C^* -norm [cf. [1], Th. 10] $||T_a||=|||a|||$ for all $a \in M$. Therefore,

$$||| a ||| = \sup_{\|x\| \le 1, f \in V \cap S} |f(xa)| = \sup_{\|x\| \le 1, f \in V \cap S} |xf(a)|$$

$$\leq \sup_{x \in V \cap S} |f(a)| \quad (|| xf|| \le |||x||| ||f||),$$

so that $|||a||| = \sup_{f \in V \cap S} |f(a)|$ for all $a \in M$; hence the bipolar of $V \cap S$ in E^* is S, that is, $V \cap S$ is everywhere $o(M^*, M)$ -dense in S. This completes the proof.

J. Dixmier [2] had shown a characterization of adjoint Banach spaces as follows: Let E be a Banach space, E^* the adjoint space of E and V be a subspace which is strongly closed and everywhere