95. A Remark on the Ideal Boundary of a Riemann Surface

By Shin'ichi MORI and Minoru OTA Ritsumeikan University and Aichi University (Comm. by K. KUNUGI, M.J.A., June 12, 1956)

Let W be an open Riemann surface, and BD the class of piecewise smooth functions f defined on W and bounded on it having a finite Dirichlet integral D[f]. We say that a sequence $\{f_n\}, f_n \in BD$, converges to f in BD if $\{f_n\}$ is uniformly bounded and $f_n \rightarrow f$ uniformly on every compact subset of W while $D[f_n - f] \rightarrow 0$.

The class of BD functions with compact carriers forms an ideal in the ring BD. If we denote by \overline{K} these functions which are limits in BD of sequences from K, we have the decomposition of $f \in BD$ as follows:

 $f = \varphi + u, \qquad \varphi \in \overline{K}, \quad u \in HBD,$

where HBD is the class of harmonic functions in BD.

To make use of the theory of normed ring, we introduce in BD a new norm given by

$$||f|| = \sup_{W} |f| + \sqrt{D[f]}.$$

Since HBD is complete in this norm, the completion of \overline{K} completes BD. The notation \overline{K} is again used for the completed \overline{K} . This completed BD is a normed ring A and the set of the maximal ideals constructs a compact Hausdorff space W^* containing W as a dense subset. $f \in A$ can be represented as a continuous function on W^* and it is equivalent to $f \in M$ that f equals to zero on a point M of W^* .

The maximal ideals, which contain K, form a closed non-dense subset Γ of W that does not correspond to the inner points of W. And we regard it as the ideal boundary of W (Royden [4]). Following the statement of Royden [4] the set \varDelta of the maximal ideals containing \overline{K} is named the harmonic boundary of W. \varDelta is a closed subset of Γ , which disappears in the parabolic case.

The existence of $\Gamma - \Delta$ for the hyperbolic case is known in a special case. To see this, we first observe the behaviour of Green's function g(p,q) of W on Δ . By Royden [3]

 $\overline{g}(p,q) = \min[l,g(p,q)] \in \overline{K}.$

This shows that $\overline{g}(p,q)$ represented as a function of W^* is $\overline{g}(M,q)=0$ for $M \in \Delta$.

Now we note that a separation of W into disjoint parts by a finite number of compact curves also separates Γ . We assume that W has an end W' bounded by a finite number of compact curves and