93. On Solutions of a Partially Differential Equation with a Parameter

By Taira SHIROTA

Osaka University

(Comm. by K. KUNUGI, M.J.A., June 12, 1956)

Let $P\left(\frac{\partial}{\partial x}, \lambda\right)$ be a polynomial of derivations $\sum_{|p| \leq m} a_p(\lambda) \frac{\partial^p}{\partial x^p}$ defined in \mathbb{R}^n and with a parameter λ , where $a_p(\lambda)$ are complex valued continuous functions on a separable and locally compact space Λ and where the degrees of polynomials $P(\xi, \lambda)$ are independent of $\lambda \in \Lambda$. Then we consider the existence of distribution solution, which is continuous with respect to $\lambda \in \Lambda$, of the partially differential equation

$$P\left(\frac{\partial}{\partial x}, \lambda\right) S_x(\lambda) = T_x(\lambda), \qquad (1)$$

where $T_x(\lambda)$ is a given continuous function on Λ into a distribution space.

In the special case in this direction where Λ consists of a point, many interesting results are obtained by B. Malgrange, L. Hörmander and L. Ehrenpreis.¹⁾ Furthermore recently F. Tréves²⁾ considered the case where $T_x(\lambda) = \delta$. Here we prove more general theorems applying considerations of these author's.

Theorem 1. For any continuous function $T_x(\lambda)$ on Λ into \mathfrak{D}'_x there is a solution $S_x(\lambda)$ of the equation (1) where $S_x(\lambda)$ is a continuous function on Λ into \mathfrak{D}'_x and where $S_x(\lambda)=0$ whenever $T_x(\lambda)=0$.

Theorem 2. Under the same assumption of Theorem 1, if $S_x(\lambda)$ is a continuous solution such that

$$P\left(\frac{\partial}{\partial x},\lambda\right)S_x(\lambda) = T_x(\lambda) \quad \text{for } \lambda \in \Lambda_0 \tag{2}$$

where Λ_0 is a closed subspace of Λ , then there is a continuous solution $S'_n(\lambda)$ of (1) defined over Λ such that

$$S'_x(\lambda) = S(\lambda) \quad for \ \lambda \in \Lambda_0.$$
 (3)

Furthermore we may replace \mathfrak{D}'_x by \mathcal{E}_x , that is, we can prove the following

¹⁾ B. Malgrange: Equations aux dérivées partielles à coefficients constants. I, II, C. R. Acad. Sci., Paris, **237** (1953), **238** (1954). L. Hörmander: On the theory of general partial differential operators, Acta Math., **94** (1955). L. Ehrenpreis: The division problem for distributions, Proc. Nat. Acad. Sci., **41** (1955).

²⁾ F. Tréves: Solution élémentaire d'équations aux dérivées partielles dépendant d'un paramètre, C. R. Acad. Sci., Paris, **242** (1956).