99. Notes on Topological Spaces. V. On Structure Spaces of Semiring

By Kiyoshi ISÉKI Kobe University (Comm. by K. KUNUGI, M.J.A., July 12, 1956)

The structure space of maximal ideals in a normed ring has been discussed by I. Gelfand and G. Silov [2]. Recently, the structure space of maximal ideals in a semiring has been considered by W. Slowikowski and W. Zawadowski [4] and the theory has generalized by the present author and Y. Miyanaga [3]. E. A. Behrens [1] has considered the relation of structure spaces formed by three special classes of ideals of a naring.

In this Note, we shall consider the structure space \mathfrak{P} of all prime ideals of a semiring A and the relation of \mathfrak{P} and the structure space \mathfrak{M} of all maximal ideals of A. Throughout the paper, we shall treat a commutative semiring A with a zero 0 and a unit 1. (For detail of the definition, see K. Iséki and Y. Miyanaga [3].)

An ideal P of A is *prime* if and only if $ab \in P$ implies $a \in P$ or $b \in P$. Since A has a unit 1, any maximal ideal is prime, therefore $\mathfrak{V} \supseteq \mathfrak{M}$.

To introduce a topology γ on \mathfrak{P} , we shall take $\gamma_x = \{P \mid x \in P, P \in \mathfrak{P}\}$ for every x of A as an open base of \mathfrak{P} . Then we have the following

Theorem 1. Let \mathfrak{A} be a subset of \mathfrak{P} , then

$$\overline{\mathfrak{A}} = \{ P' | \bigcap_{P \in \mathfrak{A}} P \subset P' \text{ and } P' \in \mathfrak{P} \},\$$

where $\overline{\mathfrak{A}}$ is the closure of \mathfrak{A} by the topology γ .

Proof. To prove that the $\overline{\mathfrak{A}}$ contains $\{P' \mid \bigcap_{P \in \mathfrak{A}} P \subset P', P' \in \mathfrak{P}\}$, let $P' \in \{P' \mid \bigcap_{P \in \mathfrak{A}} P \subset P', P' \in \mathfrak{A}\}$, and let γ_x be a neighbourhood of P', then $x \in P'$, and we have $x \in \bigcap_{P \in \mathfrak{A}} P$. Therefore, there is a prime ideal $P \in \mathfrak{A}$ such that P does not contain x and $\gamma_x \ni P$. This shows $P \in \overline{\mathfrak{A}}$.

If a prime ideal P' is not in $\{P'|_{\substack{P \in \mathfrak{A} \\ P \in \mathfrak{A}}} P \subset P', P' \in \mathfrak{A}\}$, then $\bigcap_{\substack{P \in \mathfrak{A} \\ P \in \mathfrak{A}}} P - P'$ is not empty. Hence, for $x \in \bigcap_{\substack{P \in \mathfrak{A} \\ P \in \mathfrak{A}}} P - P'$, we have $x \in P, P \in \mathfrak{A}$ and $x \in P'$. This shows $\gamma_x \ni P$, $P \in \mathfrak{A}$ and $\gamma_x \ni P'$. Therefore $\gamma_x \frown \mathfrak{A} = 0$ and hence $P' \in \overline{\mathfrak{A}}$. The proof is complete.

A similar argument for \mathfrak{M} relative to Γ -topology implies the following

Proposition. Let \mathfrak{A} be a subset of \mathfrak{M} , then