131. On Natural Systems of Some Spaces

By Kiyoshi AOKI, Eiitirô HONMA, and Tetuo KANEKO Faculty of Science, Niigata University (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1956)

In this note we shall give a brief account about the properties of natural systems and Postnikov's complexes. We state here only the results without proofs.¹⁾ Full details will appear in a forthcoming Journal of the Faculty of Science, Niigata University.

§1. Let X be an arcwise-connected, simply-connected topological space. We shall denote the *i*-th homotopy group $\pi_i(X, x_0)$ and the natural system of X by π_i and (π_i, k_i) respectively. Let K_i and e^r be the cell-complex of (π_i, k_i) and the unique *r*-cell of $K_1 = K(\pi_1)$ respectively.

Let \hat{X} be the space of loops on X with x_0 as the end point. Hereafter each notation covered by \hat{X} denotes the notation concerned with \hat{X} . In particular, \hat{e}^r is the r-dimensional matrix (d_{ij}) where d_{ij} is the unit element of $\hat{\pi}_1$ for each i and j.

In the first place we must note that the following theorem can be proved:

Theorem 1. $\hat{\pi}_1$ operates trivially on $\hat{\pi}_n (n \ge 2)$. We now define $\rho_{r+1}: \Delta^{r+1} \to \Delta^r \times I$ by $\rho_{r+1}(y_1, y_2, \cdots, y_{r+1}) = \begin{cases} (ly_1, ly_2, \cdots, ly_{r+1}), & (y_1 + y_2 + \cdots + y_r \ge y_{r+1}), \\ (my_1, my_2, \cdots, my_{r+1}), & (y_1 + y_2 + \cdots + y_r \le y_{r+1}), \end{cases}$ where $l = \frac{y_1 + y_2 + \cdots + y_{r+1}}{y_1 + y_2 + \cdots + y_r}, m = \frac{y_1 + y_2 + \cdots + y_{r+1}}{y_{r+1}}$ and $\Delta^{r+1} = \{(y_1, y_2, \cdots, y_{r+1}):$

 $0 \leq y_i \leq 1 \quad (i=1, 2, \cdots, r+1), \quad 0 \leq y_1 + y_2 + \cdots + y_{r+1} \leq 1$ is an (r+1)-dimensional Euclidean simplex and Δ^r is the r-face $\Delta^{r+1(r+1)}$ of Δ^{r+1} contained in the hyperplane $y_{r+1} = 0$.

Let $\hat{T}^r: \varDelta^r \to \hat{X}$ be an *r*-dimensional singular simplex of \hat{X} and define $\xi_{r+1}: \varDelta^r \times I \to X$ by $\xi_{r+1}(P,s) = \hat{T}^r(P)(s)$ where $P \in \varDelta^r$ and $s \in I = [0,1]$ is the parameter of loops. Define τ by $\tau \hat{T}^r = \hat{\xi}_{r+1} \circ \rho_{r+1}: \varDelta^{r+1} \to X$. We use the same notation τ for the induced map: $[\hat{T}^r] \to [T^{r+1}]$ subject to the condition that $[\hat{T}^r]$ is an element of $\hat{\pi}_r$, where T^{r+1} is an (r+1)-dimensional singular simplex of X. It is easily seen that: 1) τ is an isomorphism of $\hat{\pi}_r$ onto π_{r+1} ,

¹⁾ In this note we quote the notations and definitions from the following report without essential modifications: P. J. Hilton: Report on three papers by M. M. Postnikov (1952).