562 [Vol. 32,

130. On a Radical in a Semiring

By Kiyoshi Iséki and Yasue MIYANAGA (Comm. by K. Kunugi, M.J.A., Oct. 12, 1956)

In our previous paper [2], we considered the structure space of maximal ideals of a commutative semiring, and K. Iséki [3], one of the present authors, considered some relations of two structure spaces of it. In this paper, we shall consider a new kind of ideals of a semiring A with 0 (for the definition, see our paper [2]). A similar theory of an associative ring was treated by L. Fuchs [1].

An element a of A is said to be a *left zerodivisor* if there is a $b(\pm 0)$ of A such that ab=0. Let $\mathfrak A$ be a two sided ideal, if every element of $\mathfrak A$ is a left zerodivisor, then $\mathfrak A$ is said to be *left zerodivisor*. In the sequel, by the term *ideal*, we mean a *two sided* ideal. An ideal is *maximal left zerodivisor* if there is no left zerodivisor ideal containing properly it. By Zorn's lemma, any left zerodivisor ideal is contained in a maximal left zerodivisor. Following L. Fuchs [1], we shall define a left zeroid ideal. If $\mathfrak A$ is an ideal and $\mathfrak A+\mathfrak B$ for every left zerodivisor ideal $\mathfrak B$ is a left zerodivisor, then $\mathfrak A$ is said to be a *left zeroid* ideal. Therefore we have the following propositions which are proved easily.

Proposition 1. The sum of two left zeroid ideals is a left zeroid ideal.

Proposition 2. The join of all left zeroid ideals is also a left zeroid ideal.

The left zeroid ideal stated in Proposition 2 is said to be the *left radical* of A which is denoted by $\Re^{(t)}$. Similarly, we can define right zeroidvisor ideals, right zeroid ideals and the right radical $\Re^{(r)}$ of A. We shall define the radical \Re of A as $\Re^{(t)} \cap \Re^{(r)}$.

If every element of an ideal $\mathfrak A$ is nilpotent, $\mathfrak A$ is said to be a nil ideal. Then any nil ideal $\mathfrak A$ is left zeroid and right zeroid.

Let b be an element of \Re , and let \Re be a left zerodivisor ideal. Then there is some positive integer n such that $b^n=0$. For an element a of \Re , $(a+b)^n$ is in \Re . Hence there is an element $c(\neq 0)$ such that $(a+b)^nc=0$. Let m be the least positive integer such that $(a+b)^mc=0$, then we have $(a+b)^{m-1}c \neq 0$. Hence $(a+b) \times (a+b)^{m-1}c = 0$ implies that a+b is a left zerodivisor. Hence \Re is a left zerodi ideal. Similarly we can prove that \Re is a right zeroid ideal.

Therefore the nil radical defined as the join of all nil ideals of A is contained in the radical \Re .

On the left radical $\Re^{(l)}$, we have the following