128. Ideal Theory of Semiring

By Kiyoshi IséKI Kobe University

(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1956)

Quite recently, some writers have considered a non-commutative lattice which is a generalisation of the notion of lattices and have shown that the theory of non-commutative lattices are very useful for the theoretic physics. On the other hand, any semirings we shall develop are considered as a extensive generalisation of a noncommutative case for distributive lattices. In this paper, we shall develop the ideal theory of a semiring¹⁾ and consider a structure space of a semiring.

Let R be a semiring. Unless otherwise stated, the word *ideal* shall mean two-sided ideal.

Definition 1. An ideal P is prime, if and only if $AB \subset P$ for any two ideals A, B implies $A \subset P$ or $B \subset P$.

Definition 2. An ideal I is *irreducible*, if and only if $A \frown B = I$ for two ideals A, B implies A = I or B = I.

Definition 3. An ideal S is strongly irreducible, if and only if $A \cap B \subset S$ for any two ideals A, B implies $A \subset S$ or $B \subset S$.

A notion of strongly irreducible ideals was introduced by L. Fuchs [5] who calls *primitive*. In his paper [2], R. L. Blair used a terminology strongly irreducible. We shall follow his terminology.

From $AB \subset A \cap B$ for any two ideals A, B, any prime ideals are strongly irreducible and any strongly irreducible ideals are irreducible.

Theorem 1. The following conditions are equivalent.

(1) P is a prime ideal.

(2) If (a), (b) are principal ideals²⁾ and (a)(b) $\subseteq P$, then $a \in P$ or $b \in P$.

(3) $aRb \subset P$ implies $a \in P$ or $b \in P$.

(4) If I_1 , I_2 are right ideals and $I_1I_2 \subset P$, then $I_1 \subset P$ or $I_2 \subset P$.

(5) If I_1 , I_2 are left ideals and $J_1J_2 \subset P$, then $J_1 \subset P$ or $J_2 \subset P$.

Theorem 1 was proved by N. H. McCoy [10] for the case of rings.

Proof. It is clear that (1) implies (2). To prove that (2) implies (3), let $aRb \subset P$, then $RaRbR \subset P$, and hence we have $(a)^2(b)^3 \subset P$. This implies $a \in P$ or $b \in P$.

To prove that (3) implies (4), let $I_1I_2 \subset P$ for right ideals I_1 , I_2

¹⁾ For the detail of a semiring, see K. Iséki and Y. Miyanaga [8].

^{2) (}a) denotes the principal two-sided ideal generated by a.