127. On the B-covers in Lattices

By Yataro Matsushima
Gumma University, Maebashi
(Comm. by K. Kunugi, m.J.A., Oct. 12, 1956)

Let L be a lattice. For any two elements a and b of L we shall define the following three kinds of sets:

$$
\begin{align*}
J(a, b) & =\{x \mid x=(a \frown x) \smile(b \frown x)\} \tag{1}\\
C(J(a, b)) & =\{x \mid x=(a \smile x) \frown(b \smile x)\} \tag{2}\\
B(a, b) & =J(a, b) \frown C(J(a, b)) . \tag{3}
\end{align*}
$$

$B(a, b)$ is called the B-cover of a and b. If $c \in B(a, b)$, we shall write $a c b$ simply.

In case L is a normed lattice, a point c is defined to be between two points a and b if $d(a, c)+d(c, b)=d(a, b)$, where $d(x, y)=|x \smile y|$ $-|x \frown y|$. Several lattice characterizations of this metric betweeness have been obtained by V. Glivenko [1], L. M. Blumenthal and D. O. Ellis [2] and the author [3]; namely c lies between a and b in the metric sense if and only if one of the following conditions is satisfied in the associated normed lattice L.

$$
\begin{align*}
& (a \frown c) \smile(b \frown c)=c=(a \smile c) \frown(b \smile c) \tag{G}\\
& (a \frown c) \smile(b \frown c)=c=c \smile(a \frown b) \tag{G*}\\
& (a \smile c) \frown(b \smile c)=c=c \frown(a \smile b) \tag{**}\\
& (a \smile(b \frown c)) \frown(b \smile c)=c .
\end{align*}
$$

Thus our definition of " $a c b$ " in an arbitrary lattice is a generalization of metric betweeness in a normed lattice. The notion of B-cover for a normed lattice is due to L. M. Kelley [4].

In Theorem 1 we shall assert that $(a] \smile(b]=J(a, b) \subset(a \smile b]$, $[a) \frown[b)=C(J(a, b)) \subset[a \frown b)$. In Theorem 2 we shall deal with the relations between the two B-covers $B(a, b)$ and $B(b, c)$.

In Theorem 3 we shall consider the necessary and sufficient condition (A) in order that L be a distributive lattice.

In Theorems 4 and 5, we shall give the structures of $B(a, b)$ by imposing algebraic restrictions on them. Theorem 4 gives a generalization of the important result obtained by L. M. Kelley.

Now let $x \in J(a, b)$, then we have $x \geqq x \frown(a \smile b) \geqq(a \frown x) \smile(b \frown x)=x$, hence we obtain $x \frown(a \smile b)=(a \frown x) \smile(b \frown x)$, that is $(a, x, b) D$. From $x \frown(a \smile b)=x$, we get $x \leqq a \smile b$. We have clearly $a \smile b \in J(a, b)$, and $x \in J(a, b)$ if $x \leqq a$ or $x \leqq b$. On the other hand any element x of $J(a, b)$ is represented by $x=(a \frown x) \smile(b \frown x)$, where $a \frown x \in(a], b \frown x \in(b]$. If we take any two elements x, y from $J(a, b)$, then $x \smile y$ belongs to $J(a, b)$. Indeed we have $x \smile y=(a \smile b) \frown(x \smile y) \geqq(a \frown(x \smile y)) \smile(b \frown(x \smile y))$

