126. On Decomposition Spaces of Locally Compact Spaces

By Kiiti Morita

Department of Mathematics, Tokyo University of Education, Tokyo (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1956)

1. Introduction. As is well known, any decomposition space¹⁾ of a compact Hausdorff space is normal if it is Hausdorff. The following theorem is a generalization of this fact:²⁾

Theorem 1. Let a Hausdorff space Y be a decomposition space of a Hausdorff space X. If X is locally compact and has the Lindelöf property, then Y is paracompact and normal.

Theorem 1 fails to be true if we replace the condition "has the Lindelöf property" by "is paracompact". This is seen from Theorem 2 below; further it will be shown in 5 below that a Hausdorff space which is obtained as a decomposition space of a locally compact, paracompact, Hausdorff space is not always regular.

Theorem 2. A Hausdorff space X is obtained as the image of a locally compact, paracompact, Hausdorff space under an open continuous mapping if and only if X is locally compact.

In [1, p. 70] P. Alexandroff and H. Hopf have stated that the existence of a regular, non-normal, Hausdorff space which is a decomposition space of a normal Hausdorff space remains unknown to them. Our Theorem 2 assures the existence of such a decomposition space³⁰ and settles this question, since there exists a non-normal, locally compact Hausdorff space. However, the following theorem will give a stronger result.

Theorem 3. A Hausdorff space X is obtained as the image of a locally compact metric space under an open continuous mapping if and only if X is locally compact and locally metrizable.

In the Euclidean plane, let E be the union of the line x=0 and the points $a_{nk} = \left(\frac{1}{n}, \frac{k}{n^2}\right)$, $n=1,2,\cdots$; $k=0, \pm 1, \pm 2,\cdots$. If the sets $T_n(y)$, $n=1,2,\cdots$; $-\infty < y < \infty$ and one-point sets $\{a_{nk}\}$, $n=1,2,\cdots$;

^{1) &}quot;Decomposition space" = "Zerlegungsraum" in the sense of [1, p. 63].

²⁾ There exists a non-regular Hausdorff space which is the image, under an open continuous mapping, of a metric space which is a countable sum of compact sets; cf. [1, p. 70, Beispiel 2], where in line 15 from the bottom " $m=2,3,\cdots$ " should be replaced by " $m=n, n+1,\cdots$ ".

³⁾ If g is an open (or closed) continuous mapping of a T_1 -space Z onto a T_1 -space X, then X is homeomorphic to a decomposition space of Z associated with the decomposition $\{g^{-1}(x) \mid x \in X\}$ (cf. [1, p. 65] and [8]).