125. On Closed Mappings

By Kiiti Morita
Department of Mathematics, Tokyo University of Education, Tokyo
(Comm. by K. Kunugi, m.J.A., Oct. 12, 1956)

1. Introduction. In a previous paper [6], S. Hanai and the author have dealt with the problem: "Under what condition will the image of a metric space under a closed continuous mapping be metrizable ?", and obtained the second part of the following theorem; this result, as M. Tsuda has called our attention, was also obtained by A. H. Stone and announced in [7].

Theorem 1. Let X be a metric space and let a topological space Y be the image of X under a closed continuous mapping f. Then Y is paracompact and perfectly normal. Furthermore, Y is metrizable if and only if the boundary $\mathfrak{B} f^{-1}(y)$ of the inverse image $f^{-1}(y)$ is compact for every point y of Y.

In the present note we shall deduce the first part of Theorem 1 as an immediate consequence of Theorem 3 below, and establish an analogous result for the case of locally compact spaces; namely we shall prove the following theorems.

Theorem 2. Let X be a paracompact and locally compact Hausdorff space and let a topological space Y be the image of X under a closed continuous mapping f. Then Y is a paracompact Hausdorff space. Furthermore Y is locally compact if and only if the boundary $\mathfrak{B} f^{-1}(y)$ of the inverse image $f^{-1}(y)$ is compact for every point y of Y.

Theorem 3. Let X be a paracompact and perfectly normal space and let a topological space Y be the image of X under a closed continuous mapping f. Then Y is paracompact and perfectly normal.

The second part of Theorem 2 is a direct consequence of Theorem 4 below.

Theorem 4. Let f be a closed continuous mapping of a paracompact and locally compact Hausdorff space X onto another topological space Y. Denote by $Y_{0}\left[\begin{array}{ll}\text { or } & Y_{1}\end{array}\right]$ the set of all points y of Y such that $f^{-1}(y)\left[\right.$ or $\left.\mathfrak{B} f^{-1}(y)\right]$ is not compact. Then we have $Y_{1} \subset Y_{0}$ and (a) Y_{0} is a closed discrete subset of Y;
(b) $Y-Y_{1}$ is locally compact;
(c) the closure of any neighbourhood of y is not compact for every point y of Y_{1}.

From Theorem 4 we obtain immediately
Corollary. Under the assumption of Theorem 4 the mapping f admits of a factorization $f=f_{2} \circ f_{1}$ such that

