154. Note on Mapping Spaces

By Kiiti Morita

(Comm. by K. Kunugi, M.J.A., Nov. 12, 1956)

1. The set of all continuous mappings of a topological space X into another topological space Y is turned into a topological space by the compact-open topology; this topology is defined by selecting as a sub-basis for the open sets the family of sets T(K,G) where K ranges over all the compact sets of X and G ranges over all the open sets of Y and T(K,G) denotes the set of all continuous mappings f of X into Y such that $f(K) \subset G$. As usual we write Y^X for the mapping space.

Let X, Y be Hausdorff spaces and let Z be a topological space. With any continuous mapping f of $X \times Y$ into Z there is associated a mapping f^* from Y to the mapping space Z^x by the formula

$$[f^*(y)](x) = f(x, y).$$

The correspondence $f \rightarrow f^*$ defines a one-to-one mapping

$$\theta: Z^{X\times Y} \to (Z^X)^Y.$$

- R. H. Fox [2] proved that θ is onto if either (i) X is locally compact or (ii) X and Y satisfy the first axiom of countability. It will be shown below (Theorem 1) that θ is always a homeomorphism into. Therefore θ is a homeomorphism onto in the above two cases (i) and (ii). However, the case in which X is a CW-complex in the sense of J. H. C. Whitehead [5] and Y is a compact Hausdorff space seems to be not treated in the literature in spite of its importance in applications. In this note we shall prove that θ is a homeomorphism onto in this case also (Theorem 4). This result will be obtained from a more general theorem (Theorem 2).
- 2. A Hausdorff space X will be said to have the weak topology with respect to compact sets in the wider sense if a subset A of X such that $A \cap K$ is closed for every compact set K of X is necessarily closed. As is proved in [4], a Hausdorff space X has the weak topology with respect to compact sets in the wider sense if and only if X is obtained as a decomposition space of a locally compact, paracompact Hausdorff space.

¹⁾ M. G. Barratt [1, p. 81] has stated without proof that θ is a homeomorphism onto in case (i) with Y arbitrary and in case (ii) with Y=I (the closed unit interval).

²⁾ Thus the track group $(P,Q)^m(X,x_0;x_0)$ in the sense of Barratt [1] is isomorphic to the m-th homotopy group of the mapping space $(X,x_0)^{(P,Q)}$ with the base point $P \rightarrow x_0$ in case P is a Hausdorff space which is locally compact or satisfies the first axiom of countability, or a CW-complex.

³⁾ A T_1 -space having the weak topology with respect to compact sets in the sense of [3] is nothing but a discrete space.