150. Fourier Series. IV. Korevaar's Conjecture

By Shin-ichi Izumi
Department of Mathematics, Hokkaidô University, Sapporo

(Comm. by Z. Suetuna, m.J.A., Nov. 12, 1956)

1. J. Korevaar [1] has proved the following theorem.

Theorem 1. Let $f(x)$ be a periodic function with period 2π which is continuous except for a finite number of jump discontinuities and which belongs to the class Lip 1 on every subinterval where $f(x)$ is continuous. Then there is a constant A_{1}, depending on the Lipschitz constants, supremum of the absolute value of $f(x)$ and the set of jump points, such that for every n there is a trigonometrical polynomial

$$
\begin{equation*}
s_{n}(x)=\sum_{k=0}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right) \tag{1}
\end{equation*}
$$

of order n, which satisfies

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left|f(x)-s_{n}(x)\right| d x<A_{1} / n \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left|a_{k}\right|<A_{1} / k, \quad\left|b_{k}\right|<A_{1} / k \quad(k=0,1, \cdots, n) . \tag{3}
\end{equation*}
$$

We can see, as an immediate consequence of a result due to A. Zygmund [2], that the left side of (2) can not be $o(1 / n)$ as $n \rightarrow \infty$. In this connection J. Korevaar surmised the truth of the following

Conjecture. Let $f(x)$ be a periodic function with period 2π which is continuous except jump discontinuity at a point ξ and belongs to the class Lip 1 in the interval $(\xi, \xi+2 \pi)$. Then there is a constant A_{2} such that for every n and every trigonometrical polynomial $t_{n}(x)$ of order n

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left|f(x)-t_{n}(x)\right| d x>A_{2} / n \tag{4}
\end{equation*}
$$

We shall here prove this.
2. Proof of the conjecture. Let

$$
E_{n}(f ;-\pi, \pi)=\min _{\left(t_{n}\right)} \int_{-\pi}^{\pi}\left|f(x)-t_{n}(x)\right| d x,
$$

where the minimum is taken for all trigonometrical polynomial $t_{n}(x)$ of order n. It is sufficient to prove that

$$
E_{n}(f ;-\pi, \pi) \geqq A_{2} / n
$$

Evidently

$$
E_{n}(f ;-\pi, \pi) \geqq E_{n}(f ;-\varepsilon \pi / n, \varepsilon \pi / n),
$$

where ε is a positive number which will be determined later. If we put $t_{n}(x)=\sum_{k=0}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right)$, then

