163. On Interpolations of Analytic Functions. II (Fundamental Results)

By Tetsujiro KAKEHASHI

(Comm. by K. Kunugi, M.J.A., Dec. 13, 1956)

2. In this Note we consider a generalization of the result mentioned in the introduction of this paper.

Let D be a bounded closed points set whose complement K with respect to the extended plane is connected and regular in the sense that K possesses a Green's function with pole at infinity. Let $w=\phi(z)$ map K onto the region |w|>1 so that the points at infinity correspond to each other. Let Γ_{ρ} be the level curve determined by $|w|=\rho>1$.

Let the sequence of points (P) which lie on D satisfy the condition that the sequence of functions

$$\frac{W_n(z)}{\Delta^n w^n} = \frac{(z - z_1^{(n)})(z - z_2^{(n)}) \cdots (z - z_n^{(n)})}{[\Delta \phi(z)]^n}$$

converges to a function $\lambda(w)$, single valued, analytic and non-vanishing for w exterior to the unit circle |w|=1, and uniformly on any bounded closed points set exterior to the unit circle, that is

(17)
$$\lim_{n\to\infty} \frac{W_n(z)}{\lceil \Delta w \rceil^n} = \lambda(w) \neq 0 \quad \text{for} \quad |w| > 1,$$

where Δ is the capacity of D.

Let f(z) be a function single valued and analytic throughout the interior of the level curve $\Gamma_{\rm p}:|w|=|\phi(z)|=\rho>1$ but not analytic regular on $\Gamma_{\rm p}$. Then the sequence of polynomials $P_n(z;f)$ of respective degrees n which interpolate to f(z) in all the zeros of $W_{n+1}(z)$ is given by

(18)
$$P_{n}(z;f) = \frac{1}{2\pi i} \int_{\Gamma_{R}} \frac{W_{n+1}(t) - W_{n+1}(z)}{W_{n+1}(t)} \frac{f(t)}{t-z} dt: \qquad (1 < R < \rho)$$

and we have, for z which satisfies $|\phi(z)| = |w| < R$,

$$(19) \quad R_n(z;f) \equiv f(z) - P_n(z;f) = \frac{1}{2\pi i} \int_{\Gamma_R} \frac{W_{n+1}(z)}{W_{n+1}(t)} \frac{f(t)}{t-z} dt: \quad (1 < R < \rho).$$

In this case we have the following theorem.

Theorem 1. Let D be a closed limited points set whose complement K with respect to the extended plane is connected and regular in the sense that K possesses a Green's function with pole at infinity. Let $W=\phi(z)$ map K onto the region |w|>1 so that the points at infinity correspond to each other.

Let the function f(z) be single valued and analytic throughout