7. Contributions to the Theory of Semi-groups. VI

By Kiyoshi Iséki

(Comm. by K. KUNUGI, M.J.A., Jan. 12, 1957)

In this Note, we shall give some supplement remarks of my papers [1, I-V]. A proposition proved is a generalisation of a theorem by S. Schwarz [2].

By a character of semi-group S^{*} we mean a complex valued function $\chi(x)$ satisfying $\chi(a)\chi(b) = \chi(ab)$ for every a, b of S.

The set \hat{S} of all characters of S is a commutative semi-group with zero and unit. For χ , ψ of \hat{S} , the product $\chi\psi$ is defined as $\chi\psi(a)=\chi(a)\psi(a)$ for all a of S.

Let \mathfrak{A} be an ideal of S, then the set $\widehat{\mathfrak{A}}$ of all elements χ of \widehat{S} such that $\chi(x)=0$ for $x \in \mathfrak{A}$ is an ideal of \widehat{S} . Clearly $\widehat{\mathfrak{A}}$ is not *empty* and *closed*.

Conversely, if S is a periodic semi-group with finite numbers of idempotents, for every proper ideal $\hat{\mathfrak{N}}$ of \hat{S} , the set $\hat{\mathfrak{N}}$ of all elements x consisting of $\chi(x)=0$ for all $\chi \in \hat{\mathfrak{N}}$ is non-empty and an ideal of S.

Let \mathfrak{A} be a closed ideal in *S*, then the ideal \mathfrak{A} is the intersection of some prime ideals \mathfrak{P}_{λ} i.e. $\mathfrak{A} = \bigcap \mathfrak{P}_{\lambda}$. Therefore,

$$\varepsilon_{\lambda}(x) = \begin{cases} 0 & x \in \mathfrak{P}_{\lambda} \\ 1 & x \in S - \mathfrak{P}_{\lambda} \end{cases}$$

are in \hat{S} and each $\varepsilon_{\lambda}(x)$ is contained in $\hat{\mathfrak{A}}$. Then we have $\hat{\mathfrak{A}}=\mathfrak{A}$. Therefore in such a semi-group S, there is a one-to-one correspondence between the closed ideals in S and the ideals of \hat{S} .

Let $\mathfrak{N}, \mathfrak{V}$ be two closed ideals and let $\mathfrak{N} \subset \mathfrak{V}$, then we have $\mathfrak{N} \supseteq \mathfrak{V}$. To prove $\mathfrak{N} \supseteq \mathfrak{V}$, by the Zorn lemma, we take a maximal subsemigroup M such that $M \subset \mathfrak{V}$ and $\mathfrak{N} \frown M = \phi$. By using the Zorn lemma again, we find a maximal ideal \mathfrak{M} such that $\mathfrak{N} \subset \mathfrak{M}$ and $\mathfrak{N} \frown \mathfrak{M} = \phi$. Then since \mathfrak{M} is a prime ideal, we can define a character χ such that

$$\chi(x) = \begin{cases} 1 & x \in \mathfrak{M} \\ 0 & x \in S - \mathfrak{M} \end{cases}$$

Then $\chi \in \widehat{\mathfrak{A}}$, and, from $\chi(x) = 1$ for $x \in \mathfrak{B}$, $\chi \in \widehat{\mathfrak{B}}$.

Thus we have the following

Proposition. In any commutative periodic semi-group having a finite number of idempotents, there is a one-to-one correspondence

^{*&}gt; For undefined terminologies, see my Notes [I-V].