6. On the Ecart between Two "Amounts of Information"

By Kōmei Suzuki
(Comm. by K. Kunugr, m.J.A., Jan. 12, 1957)

§1. $d\left(\lambda_{1}, \lambda_{2} ; \Lambda\right)=\sum_{i=0}^{\infty} \Delta P_{i} \log \left(1+\frac{\Delta P_{i}}{P_{i}}\right)$
As was shown in the preceding paper the "amount of information ${ }^{22)-4)}$ has been defined by a specified probability space (or distribution), (R, \mathfrak{x}, λ), and the partition, ${ }^{1)} \Lambda$, imposed on the space R. And we have conventionally denoted it by $H(\lambda ; \Lambda)$. As usual

$$
\Lambda: R=\bigcup_{i=0}^{\infty} A_{i}, A_{i} \in \mathfrak{X}, A_{i} \cap A_{j}=0 \quad(i \neq j)
$$

For any two distributions $\left(R, \mathfrak{X}, \lambda_{1}\right)$ and ($R, \mathfrak{X}, \lambda_{2}$), providing
(a) $\quad \lambda_{1}\left(A_{i}\right)=P_{i} \geq 0, \lambda_{2}\left(A_{i}\right)=P_{i}+\Delta P_{i} \geq 0, \sum_{i} P_{i}=\sum_{i}\left(P_{i}+\Delta P_{i}\right)=1$
(b) the series $H\left(\lambda_{1} ; \Lambda\right)=\sum_{i} P_{i} \log 1 / P_{i}$ and $H\left(\lambda_{2} ; \Lambda\right)=\sum_{i}\left(P_{i}+\Delta P_{i}\right)$ $\log 1 /\left(P_{i}+\Delta P_{i}\right)$ to converge
(c) $\quad-1+\alpha \leq \Delta P_{i} / P_{i} \leq k ; k>0,1>\alpha>0$ for all i,
we have directly from the result obtained in the preceding paper

$$
0 \leq \Delta H-\sum_{i=0}^{\infty} \Delta P_{i} \log \begin{gathered}
1 \\
P_{i}+\Delta P_{i}
\end{gathered} \leq \sum_{i=0}^{\infty} \Delta P_{i} \log \left(1+\frac{\Delta P_{i}}{P_{i}}\right)
$$

where $\Delta H=H\left(\lambda_{2} ; \Lambda\right)-H\left(\lambda_{1} ; \Lambda\right)$.
Denoting $\sum_{i=0}^{\infty} \Delta P_{i} \log \left(1+\frac{\Delta P_{i}}{P_{i}}\right)$ by $d\left(\lambda_{1}, \lambda_{2} ; \Lambda\right)$, we have easily
(a)
(b)
(c)

$$
d(\lambda, \lambda ; \Lambda)=0
$$

$$
\begin{equation*}
d\left(\lambda_{1}, \lambda_{2} ; \Lambda\right) \geq 0 \quad \text { for } \lambda_{1} \neq \lambda_{2} \tag{1.1}
\end{equation*}
$$

$$
d\left(\lambda_{1}, \lambda_{2} ; \Lambda\right)=d\left(\lambda_{2}, \lambda_{1} ; \Lambda\right)
$$

It must be noted that we could not avoid the sign of equality in (b) of (1.1); because even though $\lambda_{1} \neq \lambda_{2}$, we would often have that $\lambda_{1}\left(A_{i}\right)=\lambda_{2}\left(A_{i}\right), i=0,1,2, \cdots$, for some partitions imposed on R.

To appreciate more fully we consider a distribution ($R, \mathfrak{X}, \lambda_{3}$) together with the above $\left(R, \mathfrak{x}, \lambda_{1}\right)$ and $\left(R, \mathfrak{X}, \lambda_{2}\right)$.

Providing again the following
(d) $\quad \lambda_{1}\left(A_{i}\right)=P_{i}^{(1)}, \lambda_{2}\left(A_{i}\right)=P_{i}^{(2)}=P_{i}^{(1)}+\Delta P_{i}^{(1)}, \lambda_{3}\left(A_{i}\right)=P_{i}^{(3)}=P_{i}^{(2)}+\Delta P_{i}^{(2)}$
(e) $\quad-1+\alpha \leq \Delta P_{i}^{(\nu)} / P_{i}^{(\nu)} \leq k ; 1>\alpha>0, k>0, i=0,1,2, \cdots, \nu=1,2$
we have

$$
\begin{align*}
& d\left(\lambda_{3}, \lambda_{1} ; \Lambda\right)-\left\{d\left(\lambda_{1}, \lambda_{2} ; \Lambda\right)+d\left(\lambda_{2}, \lambda_{3} ; \Lambda\right)\right\} \\
& \quad=\sum_{i=0}^{\infty}\left(\Delta P_{i}^{(1)} \log P_{i}^{(3)} / P_{i}^{(2)}+\Delta P_{i}^{(2)} \log P_{i}^{(2)} / P_{i}^{(1)}\right) \tag{1.2}
\end{align*}
$$

and

$$
\left(\Delta P_{i}^{(1)} \log P_{i}^{(3)} / P_{i}^{(2)}+\Delta P_{i}^{(2)} \log P_{i}^{(2)} / P_{i}^{(1))}\left\{\begin{array}{l}
>0 \leftrightarrow \Delta P_{i}^{(1)} \cdot \Delta P_{i}^{(2)}>0 \\
=0 \leftrightarrow \Delta P_{i}^{(1)} \cdot \Delta P_{i}^{(2)}=0 \\
<0 \leftrightarrow \Delta P_{i}^{(1)} \cdot \Delta P_{i}^{(2)}<0 .
\end{array}\right.\right.
$$

