35. On a Right Inverse Mapping of a Simplicial Mapping

By Yukihiro Kodama
(Comm. by K. Kunugi, m.J.A., March 12, 1957)

1. Let X and Y be topological spaces and let f be a continuous mapping from X onto Y. By a right inverse mapping of f, we mean a continuous mapping g of Y into X such that $f g(y)=y$ for each point y of Y. In the present note, we shall show that, in case X and Y are (finite or infinite) simplicial complexes and f is a simplicial mapping from X onto Y, the existence of a right inverse mapping of f is equivalent to some combinatorial properties of X and Y. The theorem will be stated in 3 . In 2 we shall state notations and a lemma which we need later on.
2. We denote by J the additive group of integers. By a lower sequence of abelian groups, we mean sequences of abelian groups $\left\{G_{i} ; i \in J\right\}$ and homomorphisms $\left\{g_{i} ; i \in J\right\}$ such that
i) g_{i} is a homomorphism of G_{i+1} into $G_{i}, i \in J$;
ii) $g_{i} g_{i+1}$ is the zero-homomorphism, $i \in J$.

By a homomorphism of a lower sequence $\left\{G_{i} ; g_{i}\right\}$ of abelian groups into a lower sequence $\left\{H_{i} ; h_{i}\right\}$ of abelian groups, we mean a sequence $\left\{f_{i} ; i \in J\right\}$ of homomorphisms such that
i) f_{i} is a homomorphism of G_{i} into $H_{i}, i \in J$;
ii) $h_{i} f_{i+1}=f_{i} g_{i}, i \in J$.

A homomorphism $\left\{f_{i}\right\}$ of a lower sequence $\left\{G_{i} ; g_{i}\right\}$ into a lower sequence $\left\{H_{i} ; h_{i}\right\}$ is called a retraction-homomorphism if and only if there exists a homomorphism $\left\{k_{i}\right\}$ of $\left\{H_{i} ; h_{i}\right\}$ into $\left\{G_{i} ; g_{i}\right\}$ such that, for each integer $i \in J, f_{i} k_{i}$ is the identity isomorphism of H_{i} into H_{i}.

Let X be a simplicial complex. We denote the i-section of X by X^{i}. Let A be a subcomplex of X. By the barycentric subdivision of X relative to A, we mean the barycentric subdivision of X such that all simplexes of A are not subdivided (cf. [1] or [3]).

Lemma. Let X and Y be simplicial complexes and let f be a simplicial mapping of X into Y. Let B be a subcomplex of Y. Let us denote the first barycentric subdivisions of X and Y relative to the subcomplexes $f^{-1}(B)$ and B by \tilde{X} and \tilde{Y}, respectively. Then there exists a simplicial mapping \tilde{f} of \tilde{X} into \tilde{Y}, which we call a simplicial mapping associated with f and B with the following property: Let s and s^{\prime} be simplexes of $X-f^{-1}(B)$ and $Y-B$. Then we have $f(s)=s^{\prime}$ if and only if the barycenter of s is mapped into the barycenter of s^{\prime} by \tilde{f}.

