136 [Vol. 33,

35. On a Right Inverse Mapping of a Simplicial Mapping

By Yukihiro Kodama

(Comm. by K. Kunugi, M.J.A., March 12, 1957)

- 1. Let X and Y be topological spaces and let f be a continuous mapping from X onto Y. By a right inverse mapping of f, we mean a continuous mapping g of Y into X such that fg(y)=y for each point y of Y. In the present note, we shall show that, in case X and Y are (finite or infinite) simplicial complexes and f is a simplicial mapping from X onto Y, the existence of a right inverse mapping of f is equivalent to some combinatorial properties of X and Y. The theorem will be stated in 3. In 2 we shall state notations and a lemma which we need later on.
- 2. We denote by J the additive group of integers. By a *lower* sequence of abelian groups, we mean sequences of abelian groups $\{G_i; i \in J\}$ and homomorphisms $\{g_i; i \in J\}$ such that
 - i) g_i is a homomorphism of G_{i+1} into G_i , $i \in J$;
 - ii) $g_i g_{i+1}$ is the zero-homomorphism, $i \in J$.

By a homomorphism of a lower sequence $\{G_i; g_i\}$ of abelian groups into a lower sequence $\{H_i; h_i\}$ of abelian groups, we mean a sequence $\{f_i; i \in J\}$ of homomorphisms such that

- i) f_i is a homomorphism of G_i into H_i , $i \in J$;
- ii) $h_i f_{i+1} = f_i g_i$, $i \in J$.

A homomorphism $\{f_i\}$ of a lower sequence $\{G_i; g_i\}$ into a lower sequence $\{H_i; h_i\}$ is called a retraction-homomorphism if and only if there exists a homomorphism $\{k_i\}$ of $\{H_i; h_i\}$ into $\{G_i; g_i\}$ such that, for each integer $i \in J$, $f_i k_i$ is the identity isomorphism of H_i into H_i .

Let X be a simplicial complex. We denote the *i*-section of X by X^i . Let A be a subcomplex of X. By the barycentric subdivision of X relative to A, we mean the barycentric subdivision of X such that all simplexes of A are not subdivided (cf. $\lceil 1 \rceil$ or $\lceil 3 \rceil$).

Lemma. Let X and Y be simplicial complexes and let f be a simplicial mapping of X into Y. Let B be a subcomplex of Y. Let us denote the first barycentric subdivisions of X and Y relative to the subcomplexes $f^{-1}(B)$ and B by \widetilde{X} and \widetilde{Y} , respectively. Then there exists a simplicial mapping \widetilde{f} of \widetilde{X} into \widetilde{Y} , which we call a simplicial mapping associated with f and B with the following property: Let f and f be simplexes of f be an f be simplexes of f and f be an f be any center of f is mapped into the barycenter of f by f.