128 [Vol. 33,

32. A Theorem for Metrizability of a Topological Space

By Jun-iti NAGATA

Department of Mathematics, Osaka City University (Comm. by K. Kunugi, M.J.A., March 12, 1957)

Since Alexandroff and Urysohn's work various theorems concerning metrizability of a topological space were gotten by many mathematicians, but their methods of proofs are, in general, various and rather complicated. The purpose of this brief note is to prove a theorem for metrizability, which will contain a large number of metrizability theorems as direct consequences.¹⁾

We use the following theorem due to E. Michael²⁾ as well as the well-known theorem of P. Alexandroff and P. Urysohn.

Michael's theorem. A regular topological space R is paracompact if and only if every open covering of R has an open refinement $\mathfrak{B} = \overset{\circ}{\underset{n=1}{\smile}} \mathfrak{B}_n$, where each \mathfrak{B}_n is a locally finite collection of open subsets of R.

Theorem 1. In order that a T_1 -topological space R is metrizable it is necessary and sufficient that one can assign a nbd (=neighborhood) basis $\{U_n(x) \mid n=1,2,\cdots\}$ for every point x of R such that for every n and each point x of R there exist $nbds\ S_n^1(x), S_n^2(x)$ of x satisfying

- i) $y \notin U_n(x)$ implies $S_n^2(y) \cap S_n^1(x) = \phi$,
- ii) $y \in S_n^1(x)$ implies $S_n^2(y) \subseteq U_n(x)$.

Proof. Since the necessity is clear, we prove only the sufficiency. To begin with, R is regular, since $\overline{S_n^1(x)} \subseteq U_n(x)$. Next, to show that R is paracompact, we take an arbitrary open covering $\mathfrak{B} = \{V_a \mid \alpha < \tau\}$ of R. If we let

$$\begin{split} V_{na} &= \smile \{(S_n^1\!(x))^\circ \,|\, U_n(x) \subseteq V_a\}\,,^{4)} \\ V_{mna} &= \smile \{U_m\!(x) \,|\, U_m\!(x) \subseteq V_{na}\}, \\ V_{mna}' &= \smile \{S_m^1\!(x) \,|\, U_m\!(x) \subseteq V_{na}\}\,, \\ M_{mna} &= (V_{mna}' - \smile V_{n\beta})^\circ \quad (m,n = 1,2,\cdots,\alpha < \tau), \end{split}$$

then $\mathfrak{M}_{mn} = \{M_{mn\alpha} \mid \alpha < \tau\}$ is a locally finite open collection for each m, n. To show the local finiteness of \mathfrak{M}_{mn} we choose, for an arbitrary point p of R, $\alpha (\leq \tau)$ such that $p \in V_{mn\alpha}$, $p \notin V_{mn\beta}$ $(\beta < \alpha)$. Then it follows from the condition i) of the proposition that $S_m^2(p) \cap V'_{mn\beta} = \phi$

¹⁾ The detail of the content of this note will be published in an another place.

²⁾ See [3].

³⁾ In this proof we denote by τ , α , β , γ ordinal numbers.

⁴⁾ A° denotes the interior of A.