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8§ 6. The examination of analyticity.
We can see after the integration by part that if w(k,s) is an
analytie function of k, v* satisfies —-raﬂv*zo <_8 =}..,<ﬁa__ +7;i>>,
ok ok 2\ Q¢ or
d dv*=0 <A 82+92>
an = o .
6® Ot
However in our space @’ either the equation é%m*zo or Av*=0

can not be a criterion of the analyticity of v* unlikely to the case in
D’. We see this fact easily from the following counter example. If
v=1, both equations hold for v»*, but v»* is not regular at the origin
(Example 2).

As already seen in §3, no function ¢(s,+) of @ has a compact
carrier. However we saw also in §3 that any element ¢ of D, (q, )
can be approximated by {@,;|®,c®@} in the topology S. Hence we
can see that when v(k, s) is an analytic function of k, v* is equivalent
in @ to an analytic function on a compact set L(C D,) if v* is con-
tinuous for such sequence {gojl¢j—§+¢>, @ €D (a,7), p,;€D}.

In the following we see three examples of our divergent integrals
which are the Laplace transforms. Example 1 has no singularity on
its abscissa of convergence. Example 2 has one singular point on its
abscissa of convergence, and Example 3 has its natural boundary on
its abscissa of convergence.

Example 1. f(s)= f “e-F(t)dt where F(t)= —me"sin (me?). This

0
integral diverges on R(s)<0, and ¥*-transform (by Cesaro’s methods
of summation of order k) is convergent on R(s)> —k for arbitrary k [2].
We consider this integral as above, for example for the case k=2.
We take the domain —2+ec<+<<ow, —w<g<+oo, as D,. By
repeated partial integration we see

f(s,t)= f ‘et () dt =1+ e cos (me)+ 8 ¢+ sin (e)
0
—_ sﬁsfl;,l,)ﬁ_,f?gs;l)ﬁe—(s%n cos (Wet)

o

#> T, Ishihara [1].



