No. 37

30. Fourier Series, XV. Gibbs' Phenomenon

By Kazuo Ishiguro

Department of Mathematics, Hokkaidô University, Sapporo, Japan (Comm. by Z. Suetuna, M.J.A., March 12, 1957)

1. Concerning Gibbs' phenomenon of the Fourier series H. Cramér [1] proved the following theorem.

Theorem 1. There exists a number r_0 , $0 < r_0 < 1$, with the following property: If f(x) is simply discontinuous at a point ξ , the (C, r) means $\sigma_n^r(x)$ of the Fourier series of f(x) present Gibbs' phenomenon at ξ for $r < r_0$, but not for $r \ge r_0$.

On the other hand S. Izumi and M. Satô [2] proved the following theorems:

Theorem 2. Suppose that $f(x)=a\psi(x-\xi)+g(x)$, where $\psi(x)$ is a periodic function with period 2π such that $\psi(x)=(\pi-x)/2$ $(0< x< 2\pi)$, and where

$$\limsup_{x \downarrow \xi} g(x) = 0, \qquad \liminf_{x \uparrow \xi} g(x) = 0,$$

$$\liminf_{x \downarrow \xi} g(x) \ge -a\pi, \qquad \limsup_{x \uparrow \xi} g(x) \le a\pi,$$

$$(1) \qquad \qquad \int_{0}^{x} |g(\xi + u)| du = o(|x|),$$

then Gibbs' phenomenon of the Fourier series of f(x) appears at $x=\xi$.

Theorem 3. In Theorem 2, if we replace the condition (1) by the following conditions:

$$\int_0^x g(\xi+u)du = o(|x|),$$

and

$$\int_{0}^{x} \{g(t+u)-g(t-u)\} du = o(|x|)$$

uniformly for all t in a neighbourhood of ξ , then Gibbs' phenomenon of the Fourier series of f(x) appears at $x=\xi$.

We proved that Theorem 1 holds even when the point ξ is the discontinuity point of the second kind, satisfying the condition in Theorem 2 [3]. More precisely,

Theorem 4. Suppose that

$$f(x) = a\psi(x - \xi) + g(x)$$

where $\psi(x)$ is a periodic function with period 2π such that

$$\psi(x) = (\pi - x)/2$$
 $(0 < x < 2\pi)$

and where

$$\limsup_{x \downarrow \xi} g(x) = 0, \qquad \liminf_{x \uparrow \xi} g(x) = 0,$$

$$\liminf_{x \downarrow \xi} g(x) \ge -a\pi, \qquad \limsup_{x \uparrow \xi} g(x) \le a\pi,$$