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1o Concerning Gibbs’ phenomenon of the Fourier series H. Cramr
1] proved the following theorem.

Theorem 1. There exists a number to, 0 < ro< 1, with t&e follow-
ing property: If f(x) is simply discontinuous at a point , the (C, r)
means an(X) of the Fourier series of f(x) present Gibbs’ phenomenon
at $ for r< to, but not for r to.

On the other hand S. Izumi and M. Sat5 2 proved the follow-
ing theorems:

Theorem 2. Suppose that f(x)--a(x--$)-g(x), where (x) is a
periodic function with period 2r such that (x)-(r--x)/2 (0<x<2r),
and where

lim sup g(x)--0, lim inf g(x)-0,
x x

lira inf g(x) --ar, lim sup g(x) ar,

( 1 ) g($+u) du o(! x ]),

then Gibbs’ phenomenon of the Fourier series of f(x) appears at x--$.

Theorem 3. In Theorem 2, if we replace the condition (1) by
the following conditions:

g($-ku)du

and

{g(t+u)--g(t u)}du=o(ix

uniformly for all t in a neighbourhood of $, then Gibbs’ phenomenon
of the Fourier series of f(x) appears at

We proved that Theorem 1 holds even when the point $ is the
discontinuity point of the second kind, satisfying the condition in
Theorem 2 [3. More precisely,

Theorem 4. Suppose that
f(x) a4(x )+g(x)

where @x) is a periodic function with period 2r such that

and where
lim sup g(x)=O, lim inf g(x)=O,
x x

lim inf g(x) --ar, lim sup g(x) ar,


