29. Fourier Series. XIV. Order of Approximation of Partial Sums and Cesàro Means

By Shin-ichi IZUMI, Masako SATÔ, and Gen-ichirô SUNOUCHI Department of Mathematics, Hokkaidô University, Sapporo, Japan (Comm. by Z. SUETUNA, M.J.A., March 12, 1957)

1. It is well known that, if f(t) belongs to the Lip α class, $0 < \alpha < 1$, then

(1) $s_n(t, f) - f(t) = O(\log n/n^{\alpha}),$ uniformly,

where $s_n(t, f)$ is the *n*th partial sum of the Fourier series of f(t).

The factor $\log n$ on the right of (1) can not be replaced by the smaller. Then arises the problem when the factor $\log n$ may be omitted. As its answer it is known the following theorems.

Theorem 1.¹⁾ Let $0 < \alpha < 1$, p > 1, $0 < \beta < 1$ and $\alpha = \beta - 1/p$. If f(t) belongs to the Lip (β, p) class which is a subclass of Lip α , then (2) $s_n(t, f) - f(t) = O(1/n^{\alpha})$, uniformly.

Theorem 2.²⁾ If f(t) belongs to the Lip α class, $0 < \alpha < 1$ and it is of monotonic type, then (2) holds.

A function f(t) is said to be of monotonic type, if there is a constant C such that f(t)+Ct is monotonic in the infinite interval $(-\infty, \infty)$.

We shall here treat the following problem: If f(t) belongs to the Lip α class or some other classes, then under what local condition $s_n(x, f) - f(x) = O(1/n^{\alpha})$

holds at a point x? Similar problem arises concerning Cesàro means. The latter was recently treated by T. M. Flett [4].

The theorems which we prove are as follows.

Theorem 3. Let $0 < \alpha < 1$, p > 1. Suppose that f(t) belongs to the Lip α class, or Lip (α, p) class, or that f(t) is of $(1/\alpha)$ -bounded variation. If the function

 $\theta(u) = u \varphi_x(u) = u \{ f(x+u) + f(x-u) - 2f(x) \}$ is of bounded variation in the right neighbourhood of u=0 and

(3)
$$\int_{0}^{t} |d\theta(u)| = O(t^{1+\alpha}),$$

then

(4) $s_n(x, f) - f(x) = O(1/n^{\alpha}).$

This contains Theorem 2 as a particular case. We can get also a corollary of Theorem 3 which contains Theorem 2 [see \S 3].

In the case $\alpha = 1$ in Theorem 3, it needs an additional condition that the integral

¹⁾ Cf. [1] and [2]. Lip (α, p) is a subclass of Lip $(\alpha-1/p)$.

²⁾ Cf. [3].