79. A Characterisation of Pseudo-compact Spaces

By Kiyoshi Iséki

Kobe University

(Comm. by K. KUNUGI, M.J.A., June 12, 1957)

Recently, T. Isiwata [5] has given some characterisations of a countably compact normal space by the concept of quasi-uniform continuity. In this Note, we shall give a characterisation of a pseudo-compact completely regular space by locally uniformly convergence. Some types of the convergences of a sequence of functions have been known (see H. Hahn [1, pp. 211-231]).

Let S be a completely regular T_1 -space, and suppose that $f_n(x)$ $(n=1,2,\cdots)$ and f(x) are real valued continuous functions on S. The sequence $f_n(x)$ is said to converge uniformly at a point x_0 of S, if, for every $\varepsilon > 0$, there are an index $\cdot N$ and a neighbourhood U of x_0 such that $|f_n(x)-f(x)| < \varepsilon$ for all $n \ge N$ and $x \in U$. Then we shall prove the following

Theorem 1. Let S be a completely regular T_1 -space. Then S is pseudo-compact if and only if any sequence $\{f_n(x)\}$ of continuous functions which converges uniformly to a continuous function f(x)at every point of S converges uniformly in S to f(x).

For the concept of pseudo-compactness, see E. Hewitt [2, p. 67].

Proof. Suppose that S is not pseudo-compact, then there is an unbounded continuous function f(x). For each positive integer n, we shall define $f_n(x)$ as

$$f_n(x) = \operatorname{Min} (f(x), n),$$

then it is obvious that $f_n(x)$ is continuous.

For a point x_0 of S, by the continuity of f(x), we can find a neighbourhood U of x_0 and a positive integer N such that f(x) < N for all x of U.

Therefore, by the definition of $f_n(x)$, we have $f_n(x) = f(x)$ for x of U and all $n \ge N$. Hence $f_n(x)$ converges uniformly at the point x_0 to f(x). On the other hand, for every $\varepsilon > 0$, we can find a point x_0 such that $|f(x_0)-f_n(x_0)| > \varepsilon$, since f(x) is unbounded. Hence $f_n(x)$ does not converge uniformly to f(x).

To prove the converse, we shall use a theorem of S. Mardešić and P. Papić [6]: A completely regular T_1 -space is pseudo-compact, if and only if every countable open covering has AU-covering (for the definition of AU-covering, see K. Iséki [3]). Let S be a pseudocompact, completely regular T_1 -space, and suppose that $\{f_n(x)\}$ coverges uniformly at every point to f(x). For a given positive $\varepsilon > 0$, and each