113. The Initial Value Problem for Linear Partial Differential Equations with Variable Coefficients. III

By Taira Shirota

(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1957)

In the present paper we consider mixed problems of linear parabolic equations with boundary conditions formulated by J. L. Lions [4] such that, using his notations, V is independent of the time variables, but N_t depends on them.

Our methods (§2), are also applicable to mixed problem of linear equations of many other types with above-mentioned boundary conditions, with which it seems interesting to me to compare Kato's methods [2].

As an illustlation of our considerations we consider in §3 the Fokker-Planck's equations formulated by K. Yosida [7].

Only a sketch of this proof will be given, however, the details with further investigations will be published elsewhere.

1. Preliminary. Let Ω be a domain of the Euclidean space. Let $((u, v))_t$ be real bilinear forms defined on a real separable Hilbert space V with following conditions, where $\mathfrak{D}(\Omega) \subset V \subset L_2(\Omega)$ and the injections $\mathfrak{D}(\Omega) \to V, \ V \to L_2(\Omega)$ are both continuous: there are positive constants a, b, c such that for any $t(-\infty < t < \infty)$

(1)
$$((u, u))_{\iota} \ge a || u ||_{\tilde{r}} b || u ||_{v} || v ||_{v} \ge |((u, v))_{\iota}|,$$

(II) for fixed $u, v \in V$,

 $c |t-t'| || u ||_v || v ||_v \ge |((u, v))_t - ((u, v))_{t'}|.$

Furthermore let \overline{A}_t be an operator in $L_2(\Omega)$ into itself such that $f \in D(\overline{A}_t)$ if and only if $((f, v))_t = (\overline{A}_t f, v)_{L_2(\Omega)}$ for every $v \in V$, where $(\overline{A}_t f, v)_{L_2(\Omega)}$ $= A_t f(v)$ for the distribution $A_t f$ defined by the relation: $((f, v))_t = A_t f(v)$ for every $v \in \mathfrak{D}(\Omega)$. Then \overline{A}_t is a densely defined, closed operator in $L_2(\Omega)$ into itself whose adjoint coincides with operator \overline{A}_t^* defined as above from $((u, v))_t^* = ((v, u))_t$ [3, 4]. Let G_t^* be the Green operators with respect to the form $((u, v))_t^*$. Then from (II) we see the following

Lemma 1. For any $u \in L_2(\Omega)$, G_i^*u is differentiable in V (a.e.t) and $\frac{d}{dt}G_iu$ is measurable with respect to V such that

$$\left\|\frac{d}{dt}G_{\iota}u\right\|_{\nu}\leq c\|u\|_{\nu} \quad (a.e.t).$$

Definition. Let E be a real separable Hilbert space. Then we denote by $\mathfrak{L}^n(E)$ the completion of the real linear space $\mathfrak{D}_t(E)$ with