450 [Vol. 33,

110. On Complete Orthonormal Sets in Hilbert Space

By Kiyoshi Iséki

(Comm. by K. Kunugi, M.J.A., Oct. 12, 1957)

It is well known that a set in a separable Hilbert space*) is complete, if the set is sufficiently near a complete orthonormal set under some additional conditions. Such theorems were obtained by Paley, Wiener [7], Bellman [3] and Pollard [8] in United States, and Bary [1, 2], Kostyučenko and Skorohod [6] in Soviet Russia, and Hilding [4, 5] in Sweden.

Kostyučenko and Skorohod have given a simple proof of Bary theorem: if $\{\varphi_n\}$ and $\{\psi_n\}$ are orthonormal systems in Hilbert space, and if $\sum_{n=1}^{\infty} ||\varphi_n - \psi_n|| < \infty$, then both systems are complete, if one is. S. H. Hilding [4] has shown that, if $\{\varphi_n\}$ is a complete orthonormal system and if $\sum_{n=1}^{\infty} ||\varphi_n - \psi_n|| < 1$, then $\{\psi_n\}$ is complete, and he has also obtained other two results; let $\{\varphi_n\}$ be a complete orthonormal system, and let $r_n = ||\varphi_n - \psi_n||$,

1) if
$$||\psi_n|| = 1$$
 for $n = 1, 2, \cdots$ and if $\sum_{n=1}^{\infty} r_n^2 \left(1 - \frac{r_n^2}{4}\right) < 1$,

2) if
$$(\varphi_n, \psi_n) = 0$$
 and if $\sum_{n=1}^{\infty} \frac{r_n^2}{1 + r_n^2} < 1$,

then $\{\psi_n\}$ is complete.

We shall prove the following

Theorem. Let $\{\varphi_n\}$ and $\{\psi_n\}$ be two orthonormal systems, let $r_n = \|\varphi_n - \psi_n\|$.

- 1) If $\{\varphi_n\}$ is complete, $\|\psi_n\|=1$ for $n=1,2,\cdots$ and $\sum_{n=1}^{\infty} r_n \left(1-\frac{r_n^2}{4}\right)$ $<\infty$, then $\{\psi_n\}$ is complete.
- 2) if $\{\varphi_n\}$ is complete, $(\varphi_n, \varphi_n \psi_n) = 0$ for $n = 1, 2, \dots$, and $\sum_{n=1}^{\infty} \frac{r_n^2}{1+r_n^2} < \infty, \text{ then } \{\psi_n\} \text{ is complete.}$

To prove Theorem, we shall use the techniques by S. H. Hilding [4], Kostyučenko and Skorohod [6]. First, we shall prove the second part of Theorem. Since the series $\sum_{n=1}^{\infty} \frac{r_n^2}{1+r_n^2}$ converges, there is an integer N such that

^{*)} For fundamental concepts, see B. S_z -Nagy: Spektraldarstellung linearer Transformationen des Hilbertschen Raumes, Berlin (1942).