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It is well known that every separable metric space can be imbedded
in Hilbert cube I. Recently K. Morita has proved that a regular
space having a-star-finite basis can be imbedded in the topological
product N(2) I of a generalized Baire’s zero-dimensional space N()
and I." On the other hand the author has shown that every n-
dimensional metric space can be imbedded in a product of n+ 1 one-
dimensional spaces. However, it seems that there is little study on
imbedding general metric spaces in a product of one-dimensional
spaces. The purpose of this note is to show that every metric space
can be imbedded in a product of countably many one-dimensional
spaces.

In this note we concern ourselves only with metric spaces and
mean by a covering an "open" covering.

Lemma 1. For every covering t of a metric space R there exist
collections 1I (i-1,2,...) of open sets and a covering such that

lIl[ and such that each S(p, ) (peR) intersects at most one
i=l

set of 1t for a fixed i and finitely many sets of
i--

Proof. As it was shown, for every fully normal space, by A. H.
Stone,) there exist open collections lt (i-1,2,...) and a covering

such that < lI< and such that each set of intersects at most
i--l

one set of t and finitely many sets of 1. If we take a covering

satisfying 3 <, then all the conditions of this lemma are satisfied.
Lemma 2. For every coverings (i--1,2,...) with order 32

and satisfying A , there exist locally finite coverings

(i- 1,2,. .) such that *., order N 2 (i--1,2,. .) and such that

there exists a covering 3 satisfying A.
1) The proof of this theorem is unpublished. Cf. K. Morita: Normal families

and dimension theory for metric spaces, Math. Ann., 128 (1954). Cf. also J. Nagata:
On imbedding theorem for non-separable metric spaces, Jour. Inst. Polytech. Osaka
City Univ., 8, no. 1 (1957).

2) Note on dimension theory, Proc. Japan Acad., 32, no. 8 (1956).
3) A. H. Stone: Paracompactness and product spaces, Bull. Amer. Math. Soc.,

54, no. 10 (1948).


