106. On the Continuity of Norms

By Tsuyoshi ANDÔ

Mathematical Institute, Hokkaidô University, Sapporo (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1957)

Let R be a universally continuous¹⁾ normed semi-ordered linear space. A norm on R is said to be continuous, if $a_{\nu} \bigvee_{\nu=1}^{\infty} 0^{2^{\nu}}$ implies $\inf_{\nu=1,2,\dots} ||a_{\nu}|| = 0$. The importance of continuity of a norm is in the fact that every norm-bounded linear functional on R is, roughly speaking, represented by a continuous function on the proper space of R (cf. [3]). In this note, we consider some conditions of the continuity of norms on R. We use the terminologies and notations in $\lceil 4 \rceil$.

H. Nakano obtained the following three conditions of continuity: **Theorem A.** If every norm-bounded linear functional on R is

continuous,³⁾ the norm is continuous [4, Theorem 31.10]. **Theorem B.** If a norm on R is separable and semi-continuous,⁴⁾

it is continuous $\lceil 4$. Theorem 30.27 \rceil . Theorem C. If a norm on R is uniformly monotone and com-

plete, it is continuous $\lceil 4$, Theorem 30.22 \rceil .

In the sequel, the set of a type: $\{x; a \le x \le b\}$ is called a segment.

We know that the semi-continuity implies the completeness of segments [6, Theorem 3.3]. We shall replace semi-continuity of a norm by the completeness of segments of R in proving the continuity of a norm.

A general condition for continuity is contained in

Lemma 1. A norm on R is continuous, if and only if every segment of R is complete and the norm satisfies the condition:

(1) $[p_{\nu}][p_{\mu}]=0, \forall \nu \neq \mu \ (\nu, \mu=1,2,\cdots) \ implies \ \lim \|[p_{\nu}]a\|=0 \ (a \in R).$ v→∞

Proof (cf. [3, Satz 14.3]). If the norm is continuous, it is semicontinuous, hence every segment is complete. For $a \in R$ and $[p_{\nu}][p_{\mu}]=0$, $\nu \neq \mu$ ($\nu, \mu = 1, 2, \cdots$), we have (o)-lim $[p_{\nu}]a = 0, 6^{\circ}$ hence by continuity

1) Universal continuity means that for any $a_{\lambda} \ge 0$ ($\lambda \in \Lambda$) there exists $\bigcap_{\lambda \in \Lambda} a_{\lambda}$.

2) $a_{\nu} \underset{\nu=1}{\downarrow^{\infty}} a$ means that $a_{\nu} \ge a_{\nu+1}$ ($\nu=1,2,\cdots$) and $\bigcap_{\nu=1}^{\infty} a_{\nu}=a$.

3) A linear functional \tilde{a} on R is said to be continuous (resp. universally continuous), if for any $a_{\nu} \underset{\nu=1}{\stackrel{\infty}{\downarrow}} \infty 0$ (resp. $a_{\lambda} \underset{\lambda \in A}{\downarrow} 0$) $\inf_{\nu=1,2,\cdots} |\widetilde{a}(a_{\nu})| = 0$ (resp. $\inf_{\lambda \in A} |\widetilde{a}(a_{\lambda})| = 0$). 4) A norm is said to be *semi-continuous*, if $0 \le a_{\nu} \underset{\nu=1}{\stackrel{\infty}{\uparrow}} \infty a$ implies $\sup_{\nu=1,2,\cdots} ||a_{\nu}|| = ||a||$.

5) [p] is a projection operator to the normal manifold generated by p: [p]a = $\bigcup_{\nu=1}^{\infty} (\nu \mid p \mid a) \text{ for } 0 \leq a \in R.$ 6) (o)-lim means order-limit.