145. On the Projection of Norm One in W^{*}-algebras

By Jun Tomiyama
Mathematical Institute, Tôhoku University
(Comm. by K. Kunugi, m.J.A., Dec. 12, 1957)

In the present paper, we will study on the projection of norm one from any W^{*}-algebra onto its subalgebra. By a projection of norm one we mean a projection mapping from any Banach space onto its subspace whose norm is one. At first, we find some properties of a projection of norm one from a C^{*}-algebra to its C^{*}-subalgebra. These properties turn out to have some interesting applications to the recent theory of W^{*}-algebras, which we shall show in the following.

Through our discussions we denote the dual of a Banach space M and the second dual by M^{\prime} and $M^{\prime \prime}$, respectively.

Theorem 1. Let M be a C^{*}-algebra with a unit and N its C^{*} subalgebra. If π is a projection of norm one from M to N, then

1. π is order preserving, 2. $\pi(a x b)=a \pi(x) b$ for all $a, b \in N$,
2. $\pi(x) * \pi(x) \leq \pi(x * x)$ for all $x \in M$.

Proof. Consider the second dual of M and $N, M^{\prime \prime}$ and $N^{\prime \prime} . M^{\prime \prime}$ is a W^{*}-algebra containing M as a σ-weakly dense C^{*}-subalgebra by Sherman's theorem (cf. [14, 15]), and $N^{\prime \prime}$ may be considered as a W^{*}-subalgebra of $M^{\prime \prime}$, for it is identified with the bipolar of N in $M^{\prime \prime}$. The second transpose of π, the extension of π to $M^{\prime \prime}$, is a projection of norm one from $M^{\prime \prime}$ to $N^{\prime \prime}$. Thus, it suffices to prove the theorem when M is a W^{*}-algebra and N a W^{*}-subalgebra of M. As in [5, Lemma 8] we can show that π is *-preserving and order preserving, which one can easily see since π is of norm one.

Next, take a projection e of N and $a \in M$, positive and $\|a\| \leq 1$. We have $e \geq e a e$, whence $e \geq \pi(e a e)$, so that $\pi(e a e)=e \pi(e a e) e$. Thus, we have $\pi(e x e)=e \pi(e x e) e$ for all $x \in M$. Take an element $x \in M,\|x\| \leq 1$. Put $\pi(e x(1-e))=x^{\prime}$. Then

$$
\begin{aligned}
& \|e x(1-e)+n e\|=\|\{e x(1-e)+n e\}\{(1-e) x * e+n e\}\|^{1 / 2} \\
& =\left\|e x(1-e) x * e+n^{2} e\right\|^{1 / 2} \leq\left(1+n^{2}\right)^{1 / 2} \text { for all integers } n .
\end{aligned}
$$

On the other hand, if $\frac{e x^{\prime} e+e x^{\prime *} e}{2} \neq 0$ we may suppose without loss of generality that this element has a positive spectrum $\lambda>0$. Then,

$$
\begin{gathered}
\left\|x^{\prime}+n e\right\|=\left\|e x^{\prime} e+n e+e x^{\prime}(1-e)+(1-e) x^{\prime} e+(1-e) x^{\prime}(1-e)\right\| \\
\geq\left\|e\left(x^{\prime}+n l\right) e\right\| \geq\left\|\frac{e x^{\prime} e+e x^{\prime *} e}{2}+n e\right\| \geq \lambda+n \text { for all } n .
\end{gathered}
$$

Therefore, $\left\|x^{\prime}+n e\right\| \geq \lambda+n>\left(1+n^{2}\right)^{1 / 2} \geq\|e x(1-e)+n e\|$ for a sufficient-

