35. On Countable-Dimensional Spaces

By Jun-iti NAGATA

Department of Mathematics, Osaka City University (Comm. by K. KUNUGI, M.J.A., March 12, 1958)

As is well known, not every infinite-dimensional metric space is the countable sum of zero-dimensional spaces; in fact the Hilbert-cube I_{ω} is not the countable sum of 0-dimensional spaces. It is known that by the generalized decomposition-theorem due to M. Katětov [1] and to K. Morita [2] a metric space is the countable sum of 0-dimensional spaces if and only if it is the countable sum of finite-dimensional spaces. We call such a space a *countable-dimensional space*. It seems, however, that our knowledge of countable-dimensional spaces is, because of peculiar difficulties to the infinite-dimensional case, very little if compared to that of finite-dimensional spaces.

The purpose of this note is to extend the theory of finite-dimensional spaces to the countable-dimensional case.¹⁾

All spaces considered in the present note will be assumed to be metric spaces unless the contrary is explicitly stated. Dim R denotes the Lebesgue dimension of R.

We denote by $\operatorname{order}_{p} \mathfrak{l}$ for a point p and for a covering \mathfrak{l} of a space R the largest integer n such that there exist n members of \mathfrak{l} which contain p. We also use the notation $B(\mathfrak{l}) = \{B(U) | U \in \mathfrak{l}\}$, where B(U) means the boundary of U.

Lemma 1. Let A_n , $n=1, 2, \cdots$ be a countable number of 0-dimensional sets of a space R. Let $\{U_{\alpha} \mid \alpha < \tau\}^{2}$ be a collection of open sets and $\{F_{\alpha} \mid \alpha < \tau\}$ a collection of closed sets such that $F_{\alpha} \subset U_{\alpha}$, $\alpha < \tau$ and such that $\{U_{\beta} \mid \beta < \alpha\}$ is locally finite for every $\alpha < \tau$. Then there exists a collection of open sets V_{α} , $\alpha < \tau$ such that

1) $F_{\alpha} \subset V_{\alpha} \subset U_{\alpha}, \ \alpha < \tau$,

2) order $p \mathcal{B}(\mathfrak{V}) \leq n-1$ for every $p \in A_n$, where $\mathfrak{V} = \{ V_a \mid a < \tau \}.$

Proof. We shall define, by induction with respect to α , satisfying 1) and

2)_a order_p $B(\mathfrak{V}_{\alpha}) \leq n-1$ for every $p \in A_n$, where $\mathfrak{V}_{\alpha} = \{V_{\beta} \mid \beta \leq \alpha\}$. We take open sets G_1 , W_1 such that

$$G_1 \supset F_1, \quad W_1 \supset U_1^c, \quad \overline{G}_1 \frown \overline{W}_1 = \phi.$$

Since A_1 is 0-dimensional, there exists an open, closed set N_1 of A_1 satisfying $\overline{G}_1 \frown A_1 \subset N_1 \subset (\overline{W}_1)^c \frown A_1$. If we put $B_1 = N_1 \smile F_1$, $C_1 = (A_1 - N_1)$

¹⁾ The detail of the content of this note will be published in an another place.

²⁾ We denote by α , β , γ , τ ordinal numbers.