30. On a Generalization of the Concept of Functions

By Mikio SATO

(Comm. by Z. SUETUNA, M.J.A., March 12, 1958)

1. L. Schwartz has generalized the concept of functions on a C^{∞} manifold by introducing his notion of *distributions*, which revealed to be most useful in various branches of analysis.¹⁾ We now propose to introduce another generalization of the function concept in case the underlying manifold is C^{ω} (instead of C^{∞}) in utilizing the boundary values of analytic functions. This new concept will comprise that of Schwartz's distributions in case of C^{ω} -manifold. We shall call a *hyperfunction* a "function" in this generalized sense, defined precisely as follows. (For brevity, we give here the definition of the hyerfunction only in the 1-dimensional case, though we can define it for *n*-dimensional C^{ω} -manifolds.)²⁾

Let R be the real axis $(-\infty, \infty)$ which we shall consider as lying in the complex plane C. Let N be a locally compact subset of R. The family of all the "complex nbds of N", i.e. the open sets D, D_1 , D_2, \cdots of C which contain N as a closed subset, will be denoted by $\mathfrak{D}(N)$. On the other hand we shall denote, for any open set G of C, the set of analytic (i.e. single valued regular analytic) functions in G with $\mathfrak{A}(G)$. $\mathfrak{A}(G)$ forms a ring, and if $D_1 \supseteq D_2$, $D_i \in \mathfrak{D}(N)$, we have clearly natural homomorphisms of $\mathfrak{A}(D_1)$ in $\mathfrak{A}(D_2)$ and of $\mathfrak{A}(D_1-N)$ in $\mathfrak{A}(D_2-N)$. The inductive limit of rings $\mathfrak{A}(D-N)$, $D \in \mathfrak{D}(N)$, will be denoted with $\widetilde{\mathcal{A}}_N$, and that of $\mathfrak{A}(D)$, $D \in \mathfrak{D}(N)$, with \mathcal{A}_N . $\widetilde{\mathcal{A}}_N$ is then considered as an extension ring of \mathcal{A}_N .

The quotient \mathcal{A}_N -module of $\widetilde{\mathcal{A}}_N$ mod. \mathcal{A}_N will be denoted by \mathcal{B}_N , and the elements of \mathcal{B}_N generally by g(x). These elements will be called hyperfunctions (h. f.) on N. A h. f. g(x) is given by a function $\varphi(z) \in \mathfrak{A}(D-N)$ for some $D \in \mathfrak{D}(N)$. $\varphi(z)$ is called a *defining function* of g(x), and we shall write

(1) $g(x) = \varphi(x)|^{+} - \varphi(x)|^{-}$ or $g(x) = \varphi(x+i0) - \varphi(x-i0)$.

It is easy to show that for every $g(x) \in \mathcal{B}_N$, there exists an open set $M \subseteq R$, such that g(x) can be regarded as an element of \mathcal{B}_M ,

¹⁾ L. Schwartz: Théorie des Distributions, I, II, Paris, Hermann (1950-1951).

²⁾ After I had completed the manuscript of this note, I was kindly informed by Professor A. Weil through Professor Iyanaga that the same notion as that of "hyperfunction" had been already introduced by Professor G. Köthe in his paper: Die Randverteilungen analytischer Funktionen, Math. Z., 57 (1952). The content of §§ 2, 4 of the present note is also essentially contained in the paper of Professor Köthe, but the localization theorem and the extension to the case of *n*-dimensional manifolds are not considered in that paper.