124 [Vol. 34,

29. Total Orderings on a Semilattice¹⁰

By Naoki KIMURA

Tokyo Institute of Technology and Tulane University (Comm. by K. Shoda, M.J.A., March 12, 1958)

A semilattice S is called *orderable* if there exists an ordering \leq such that (1) a < b implies $ac \leq bc$ and (2) $a \leq b$ or $b \leq a$ for any $a, b \in S$. Such an ordering is called *permissible* on S. The main purpose of this note is to present a necessary and sufficient condition for a semilattice to be orderable.²⁾

THEOREM 1. A semilattice is orderable if and only if it does not contain any subsemilattice consisting of four elements a, b, c, d satisfying either (i) ab=b, ac=c, bc=d or (ii) ab=ac=bc=d.

COROLLARY. Any chain, in the sense that ab=a or b for all a, b, is orderable.

An element a of a semilattice is called maximal if ax=a implies x=a.

THEOREM 2. Let S be an orderable semilattice. Let T be the complement of the set of all maximal elements in S. Then there exists a one to one correspondence between the set of all permissible orderings on S and the set of all subsets of T.

COROLLARY. Let N(n) be the number of all non-isomorphic orderable semilattices consisting of n elements. Then it satisfies the following formula:

$$N(n+1) = \sum_{\substack{0 \le p < q \le n \\ p+q = n}} N(p)N(q) + \begin{cases} \frac{1}{2}N(n/2)(N(n/2)+1) & \text{if n is even,} \\ 0 & \text{if n is odd.} \end{cases}$$

Further, N(n) is equal to the coefficient of x^n in the expansion of f(x) defined by

$$f(x^2)+x(f(x))^2-2f(x)+2=0.$$

We shall close this note by listing here two examples as application.

EXAMPLE 1. Let S be a chain. Let (A, B) be a partition of S, in the sense that $S=A \cup B$, $A \cap B=\square$, the empty set. Then the ordering defined by

$$x \le y$$
 if and only if
$$\begin{cases} x, y \in A, & xy = x \\ \text{or} & x \in A, y \in B \\ \text{or} & x, y \in B, xy = y, \end{cases}$$

gives a permissible ordering on S.

Conversely, any permissible ordering on S can be obtained by a

¹⁾ This work was partially supported by the National Science Foundation, U.S.A.

²⁾ This is an abstract of the paper which will appear elsewhere.