81. Relations between Solutions of Parabolic and Elliptic Differential Equations

By Haruo Murakami
Kobe University
(Comm. by K. Kunugi, m.J.A., June 12, 1958)

In this note we shall show that under some conditions the solution $u(x, t)$ of

$$
\sum_{i=1}^{m} \frac{\partial^{2} u}{\partial x_{i}^{2}}-\frac{\partial u}{\partial t}=f(x, t, u)
$$

converges to a solution $v(x)$ of

$$
\sum_{i=1}^{m} \frac{\partial^{2} v}{\partial x_{i}^{2}}=\bar{f}(x, v)
$$

as $t \rightarrow \infty$.
Let G be a domain which is regular for Laplace's equation ${ }^{1)}$ in the m-dimensional Euclidean space, and let Γ be the boundary of G. Set $D=G \times(0, \infty)$ and $B=\Gamma \times[0, \infty)$. We remark that D is regular for the heat equation ${ }^{2)}$ and therefore regular for the equation $\left(\mathrm{E}_{1}\right)$ below. ${ }^{\text {8) }}$

Now, let ∇ and \triangle be the generalized heat operator ${ }^{4)}$ and the generalized Laplacian operator respectively, i. e.

$$
\begin{gathered}
\nabla u(x, t)=\lim _{r \downarrow 0} \frac{(n+2)^{\frac{m}{2}+1}}{m \pi^{\frac{m}{2}} r^{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cdots \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\{u(\xi, \tau)-u(x, t)\} \sin ^{m-1} \theta \\
\times \cos \theta(\log \operatorname{cosec} \theta)^{\frac{m}{2}} J d \varphi_{1} \cdots d \varphi_{m-1} d \theta
\end{gathered}
$$

and

$$
\Delta u(x)=\lim _{r \downarrow 0} \frac{2 \cdot \Gamma\left(\frac{m}{2}+1\right)}{\pi^{\frac{m}{2}} r^{2}} \int_{0}^{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cdots \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\{u(\xi)-u(x)\} \boldsymbol{J} d \varphi_{1} \cdots d \varphi_{m-1},
$$

where in the first expression, $(\xi, \tau)=\left(\xi_{1}, \cdots, \xi_{m}, \tau\right)$ with

$$
\xi_{i}=x_{i}+2 r \sqrt{m} \sin \theta \sqrt{\log \operatorname{cosec} \theta} \eta_{i} \quad(i=1, \cdots, m)
$$

1) This means that the 1st boundary value problem of Laplace's equation for G is always solvable for any continuous data on Γ.
2) "Regular for the heat equation" means that the 1st boundary value problem of the heat equation for D is always solvable for any continuous data on $G \checkmark B$. D is regular for the heat equation if and only if G is regular for Laplace's equation. For the proof, see "On the regularity of domains for parabolic equations", Proc. Japan Acad., 34, 347-348 (1958).
3) It was proved in [1, p.626] that a p-domain is regular for $\left(\mathrm{E}_{1}\right)$ if and only if it is regular for the heat equation.
4) See [1, p. 627], in which we used the symbolinstead of ∇.
