95. Some Expectations in AW*-algebras

By Mitsuru Nakai
Mathematical Institute, Nagoya University
(Comm. by K. Kunugi, m.J.A., July 12, 1958)

1. Let A be a commutative $A W^{*}$-algebra (cf. [2]). We denote by B and P the totality of self-adjoint elements and projections in A, respectively. It is well known that A is isometrically isomorphic to the space $C(S)$ of all complex-valued continuous functions on a Stonean space S. In this representation, B (or P) is the totality of real-valued (or characteristic) functions in $C(S)$ which forms a conditionally complete vector lattice (or complete lattice) by the usual ordering in $C(S)$.

Let M be a left module over B. We shall call a mapping n of M into B an n-mapping on M if n satisfies

$$
\begin{array}{ll}
n(x+y) \leq n(x)+n(y) & (x, y \in M) \\
n(a x)=a n(x) & (x \in M, a \in A \text { with } a \geq 0) . \tag{2}
\end{array}
$$

If a mapping f of a subset $D(f)$ of M into B satisfies

$$
\begin{equation*}
-n(-x) \leq f(x) \leq n(x) \tag{3}
\end{equation*}
$$

then we call f to be n-bounded. In the case when f is additive and when $D(f)$ is an additive subgroup of M, we can replace (3) by the inequality: $f(x) \leq n(x)$.
2. For convenience, we state a simple lemma which is easily verified.

Lemma 1. Let M be a left module over (not necessarily commutative) $A W^{*}$-algebra L and $P(x)$ be a proposition concerning the element x in M. Suppose that the following two conditions are satisfied:
(4) If there exists a family $\left(e_{i} ; i \in I\right)$ of orthogonal projections in L with l.u.b. 1 such that all $P\left(e_{i} x\right)$ are true, then $P(x)$ is true.
(5) For any projection e in L which is not zero, we can find a non-zero projection e^{\prime} in L such that $e^{\prime} \leq e$ and $P\left(e^{\prime} x\right)$ is true. Then $P(x)$ is true.
3. Now we state an extension theorem of Hahn-Banach type.

Theorem 1. Let M be a left module over B with n-mapping n. Given an n-bounded B-module homomorphism of a B-submodule of M into B, it can be extended to an n-bounded B-module homomorphism of M into B.

Proof. Let h be an n-bounded B-module homomorphism of a submodule $D(h)$ of M. Let R be the set of all couples ($f, D\left(f^{\prime}\right)$), where f is an n-bounded B-module homomorphism of a submodule $D(f)$ of M containing $D(h)$ into B such that $f=h$ on $D(h)$. If we define

