94. Ideals in Non-commutative Lattices

By Shin-ichi Matsushita
(Comm. by K. Kunugi, m.J.A., July 12, 1958)

§ 1. We published in 1953 a résumé of the theory of non-commutative lattices in C. R. Acad. Sci., Paris [11]. After this, we have received communications from Dr. F. Klein-Barmen and also from Prof. Dr. Pascual Jordan that Prof. P. Jordan with collaborators, Dr. E. Witt and Dr. W. Böge, had been constructing the theory of non-commutative lattices, independently of us, for the sake of applications in "theoretical physics" [3-6], and also independently, F. Klein published some excellent and interesting works on the similar articles [7-10].

Here, we shall make a survey of ideal theory in non-commutative lattices, from which the structure of some kinds of non-commutative lattices (normal and regular type) is decided (see §3). This paper is also a résumé; and a full note, with complete proofs of [1], (titled "Theorie der nichtkommutativen Verbände I-II") will appear elsewhere.*)
§ 2. Let \mathfrak{U} be an algebraic system with binary operators $*$ and o, both of which are associative and idempotent, but not necessarily commutative. If an order $<$ in \mathfrak{A}, i.e. i) $x<x$, ii) $x<y, y<x \rightarrow x=y$, iii) $x<y, y<z \rightarrow x<z$ for $x, y, z \in \mathfrak{Z}$, satisfies a further condition: for any $a \in \mathfrak{Z}$,

$$
\begin{equation*}
x<y \rightarrow a * x<a * y \quad(\text { or } x * a<y * a) \tag{2.1}
\end{equation*}
$$

then it is called left (resp. right) *-order of \mathfrak{A}. And if a left (or right) $*$-order $<$ of \mathfrak{M} fulfils

$$
\begin{equation*}
x<x * a \text { (resp. } x<a * x \text {) for any } x, a \in \mathfrak{M}, \tag{2.2}
\end{equation*}
$$

then such $<$ is called a left (resp. right) L-*-order of \mathfrak{M}. Similarly, a left (or right) L-o-order of \mathfrak{H} is defined.

Theorem 1. In order that \mathfrak{H} admit at least one left or right L-*-order, it is necessary and sufficient that the following equality be kept in \mathfrak{A};
a) $x * a=x * a * x \quad$ resp. β) $\quad a * x=x * a * x$.

An order $<$ (or $<$) is called stronger (resp. weaker) than $<$ (resp. $<$) if $a<b$ yields $a<b$: then

Theorem 2. Suppose that \mathfrak{A} satisfies the condition α) (or β)) in (2.3) above: Then
I) The order in \mathfrak{A} defined by $a<b$ if and only if $b=a * x$ (resp.

[^0]
[^0]: *) I express my hearty thanks to Dr. F. Klein-Barmen and also to Prof. Dr. Van der Waerden and his assistant Dr. R. Fischer for their precious advices and the precise examination of my theory.

