138. On a Generalization of the Concept of Functions. II

By Mikio SATO

Mathematical Institute, University of Tokyo (Comm. by Z. SUETUNA, M.J.A., Nov. 12, 1958)

In our previous paper [1], we have introduced the notion of *hyperfunctions* on C° -manifolds by means of boundary values of analytic functions as a generalization of the concept of functions, and sketched the theory thereof in case of dimension 1 (the theory of *hyperfunctions of a single variable*). The purpose of the present and subsequent papers is to give the outline of the theory in case of dimensions >1 (the theory of *hyperfunctions of several variables*).¹⁾

§1. Distributions of a sheaf. Let X be a topological space. We denote with $\mathfrak{L}(X)$ the totality of open sets of X. Let \mathfrak{F} be a sheaf of modules over X. For any $D \in \mathfrak{L}(X)$ and $n=0, 1, 2, \cdots$, we denote as usual the *n*-cohomology group of D with coefficients in \mathfrak{F} with $H^n(D, \mathfrak{F})$. $H^0(D, \mathfrak{F})$ is the section-module of \mathfrak{F} over D.

Let S be a closed subset of X. For any $D \in \mathfrak{Q}(X)$ and n=0, 1, 2, ..., we define $G^n(S, D, \mathfrak{F})$ as follows: $G^0(S, D, \mathfrak{F})$ and $G^1(S, D, \mathfrak{F})$ are to mean the kernel and cokernel of the natural homomorphism $H^0(D, \mathfrak{F}) \rightarrow H^0(D-S, \mathfrak{F})$ respectively, and for $n \ge 2$ we put $G^n(S, D, \mathfrak{F})$ $= H^{n-1}(D-S, \mathfrak{F}).$

For $D \supset D'(D', D \in \mathfrak{L}(X))$ we have the natural homomorphism $\rho_{D'D}^n$: $G^n(S, D, \mathfrak{F}) \rightarrow G^n(S, D', \mathfrak{F})$. For each n, $(\{G^n(S, D, \mathfrak{F})\}_{D \in \mathfrak{L}(X)}, \{\rho_{D'D}^n\}_{D', D \in \mathfrak{L}(X)})$ constitutes a pre-sheaf over X. We shall denote with $\text{Dist}^n(S, X, \mathfrak{F})$ the sheaf over X determined by this pre-sheaf. $\text{Dist}^n(S, X, \mathfrak{F})$ has the stalk 0 at any point on X - S, and if $X' \in \mathfrak{L}(X)$, $X' \supset S$, the natural homomorphism $\text{Dist}^n(S, X, \mathfrak{F}) \rightarrow \text{Dist}^n(S, X', \mathfrak{F})$ is clearly bijective. In identifying these $\text{Dist}^n(S, X', \mathfrak{F})$, we shall denote the sheaf over S thus determined by $\text{Dist}^n(S, \mathfrak{F})$.

Definition 1. We call each element of $H^{0}(S, \text{Dist}^{n}(S, \mathfrak{F})) = H^{0}(X, \text{Dist}^{n}(S, X, \mathfrak{F}))$ an \mathfrak{F} -distribution of degree n over S.

It is clear that we have the natural homomorphism:

 $(1) \qquad \qquad G^n(S, X, \mathfrak{F}) \to H^0(S, \operatorname{Dist}^n(S, \mathfrak{F}))$

which is bijective for n=0.

Example 1. For S=X, we have $\text{Dist}^{0}(S, \mathfrak{F})=\mathfrak{F}$, $H^{0}(S, \text{Dist}^{0}(S, \mathfrak{F}))$ = $H^{0}(X, \mathfrak{F})$, while $\text{Dist}^{n}(S, \mathfrak{F})=0$ for $n \ge 1$.

Now let $\{X', \mathfrak{F}', S'\}$ be another triple consisting of a topological space X', a sheaf of modules \mathfrak{F}' over X', and a closed set S' of X'.

¹⁾ We have explained our theory, including the case of several variables, in [2] in Japanese. An English account will soon appear in J. Fac. Sci. Univ. Tokyo.