6. Convergence Concepts in Semi-ordered Linear Spaces. I

By Hidegorô NAKANO and Masahumi SASAKI (Comm. by K. KUNUGI, M.J.A., Jan. 12, 1959)

Concerning semi-ordered linear spaces, L. Kantorovitch [1] gave originally two different concepts of convergence, that is, order convergence and star convergence. One of the authors introduced two other concepts, that is, dilatator convergence in [2] and individual convergence in [3], which are essentially equivalent to each other. Combining these concepts, we also obtain star-individual convergence in [4]. In this paper we want to discuss these concepts of convergence and their combinations more systematically. In the sequel we will use the terminologies and notations in the book [4].

Let R be a continuous semi-ordered linear space. We consider the order convergence basic, that is, for a sequence $a_{\nu} \in R$ ($\nu = 0, 1, 2, \cdots$), $a_0 = \lim_{\nu \to \infty} a_{\nu}$ means

$$a_0 = \bigcap_{\nu=1}^{\infty} \bigcup_{\mu \ge \nu} a_{\mu} = \bigcup_{\nu=1}^{\infty} \bigcap_{\mu \ge \nu} a_{\mu}.$$

In the sequel we denote by $\{a_{\nu}\}_{\nu}$ an arbitrary sequence $a_{\nu} \in R$ ($\nu = 0, 1, 2, \cdots$) and $\{a_{\nu}\}_{\nu \ge 1}$ means a_{ν} ($\nu = 1, 2, \cdots$). A mapping \mathfrak{a} of all sequences $\{a_{\nu}\}_{\nu}$ to sequences $\{a_{\nu}^{\mathfrak{a}}\}_{\nu}$ is called an *operator*, if

1) $a_0 = \lim_{\nu \to \infty} a_{\nu} \text{ implies } a_0^{\alpha} = \lim_{\nu \to \infty} a_{\nu}^{\alpha},$

2) $\{a_{\nu}^{a}\}_{\nu \geq 1}$ depends only upon $\{a_{\nu}\}_{\nu \geq 1}$

that is, $a_{\nu}=b_{\nu}$ ($\nu=1, 2, \cdots$) implies $a_{\nu}^{a}=b_{\nu}^{a}$ ($\nu=1, 2, \cdots$). An operator a is said to be *linear* if

 $(\alpha a_{\nu}+\beta b_{\nu})^{a}=\alpha a_{\nu}^{a}+\beta b_{\nu}^{a} \qquad (\nu=0,\,1,\,2,\cdots).$

For two operators a, b, putting

$$a^{\mathfrak{a}\mathfrak{b}}_{\nu} = (a^{\mathfrak{a}}_{\nu})^{\mathfrak{b}} \quad (\nu = 0, 1, 2, \cdots),$$

we also obtain an operator ab, which will be called the *product* of a and b. With this definition, we have obviously

$$(\mathfrak{ab})\mathfrak{c} = \mathfrak{a}(\mathfrak{bc}).$$

a is said to commute b, if ab=ba.

A set \mathfrak{A} of operators is called a *process*, if for any two sequences $\{a_{\nu}\}_{\nu}, \{b_{\nu}\}_{\nu}$ with $a_{0} \neq b_{0}$ we can find $\mathfrak{a} \in \mathfrak{A}$ for which $a_{0}^{\mathfrak{a}} \neq b_{0}^{\mathfrak{a}}$. A set A of processes is called a *modificator*, if for any $\mathfrak{A}_{1}, \mathfrak{A}_{2} \in A$ we can find $\mathfrak{A} \in A$ for which $\mathfrak{A} \subset \mathfrak{A}_{1}, \mathfrak{A}_{2}$. For two modificators A, B we write $A \geq B$, if for any $\mathfrak{A} \in A$ we can find $\mathfrak{B} \in B$ for which $\mathfrak{A} \supset \mathfrak{B}$. If $A \geq B$ and $B \geq A$ at the same time, we write A = B.

Let A and B be modificators. For a process $\mathfrak{A} \in A$ and a system of processes $\mathfrak{B}_{\mathfrak{a}} \in B$ ($\mathfrak{a} \in \mathfrak{A}$) we see easily that the set