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1. It is well known that an irreducible, complete, (upper and
lower) continuous, complemented modular lattice L is finite-dimensional
if and only if the following condition is satisfied:®

Condition 4. L contains mo infinite sequence (a,) of monzero
elements a,, 1=1, 2, -, such that for every 1>1 there exists an ele-
ment b, satisfying a, ,>a,)b,? and a,~b,.

The purpose of the present paper is to prove the following theo-
rem. By m(L) we denote the least upper bound of all integers » such
that L contains an independent system of mutually projective nonzero
r elements.

Theorem. For any complete upper continuous modular lattice L
the condition 4 is equivalent to each of the following two conditions:

Condition M. m(L) is finite.

Condition F. There is no independent countable subset (a;) such
that a,Za,,,==0 for every i.®

As a consequence of this we shall obtain

Corollary 1. Let % be a semisimple ring with unit element and
assume that R-left (-right) module N is injective. Then N is a regular

ring (in the sense of v. Neumann), and the following three conditions
are equivalent:

(i) N s of bounded indew.

(ii) R/P 4s a simple ring with minimum condition for every
primitive ideal P.

(iii)) N s P-soluble.”

In this case, R-right (-left) module N is also injective.

2. Henceforth L always will denote a modular lattice with zero.

Lemma 1. Let aNbd=aNe¢=0 and aJb>c. Then (aJc)1b~,c.”

Lemma 2. If 03ca<b=b,{Jb,lJ--- Jb,, then there exist nonzero
o', b such that a>a'~b <b, for some 1.

In fact, if aN(b,U---Ub,)=0, then b,N(aUbU---Ubd,)~a by
Lemma 1; hence Lemma 2 follows by induction.

1) See [7].

2) U denotes the join of independent elements.
3) By aZb we mean the existence of ¢ such that a>>cab.
4) See [5].

5) b~gc is meant that anzaUc.




