2. Notes on Tauberian Theorems for Riemann Summability. II

By Kenji Yano
Department of Mathematics, Nara Women's University, Nara, Japan
(Comm. by Z. Suetuna, m.J.A., Jan. 12, 1959)

In this note we shall deal with the problem proposed in § 12 of Yano [6]. We prove a theorem (Theorem 1) concerning Riemann summability by using Lemma 3. Riemann summability of $\sum a_{n}$ is closely connected with Cesàro summability of an even function $\varphi(t) \in L$ with Fourier coefficients a_{n}. Here we notice that in Riemann summability a_{n} are independent of Fourier coefficients. Lemma 1 will interpret the relation between these two summabilities by the help of Lemmas 2 and 4 ; - this is a chief object of this paper. In § 3 we shall give " Riemann-Cesàro summability "-analogue.

1. Riemann summability. A series

$$
\sum a_{\nu}=\sum_{\nu=1}^{\infty} a_{\nu} \quad\left(a_{0}=0\right)
$$

is said to be summable to sum s by Riemann method of order p, or briefly summable (R, p) to s, if the series in

$$
F(t)=\sum_{\nu=1}^{\infty} a_{\nu}\left(\frac{\sin \nu t}{\nu t}\right)^{\nu}
$$

converges in some interval $0<t<t_{0}$, and $F(t) \rightarrow s$ as $t \rightarrow 0$ (cf. Verblunsky [1]). Here we suppose that p is a positive integer, and a_{n} are real throughout this paper.

The n-th Cesàro sum of order r of $\sum a_{\nu}$ is

$$
s_{n}^{r}=\sum_{\nu=0}^{n} A_{n-\nu}^{r} a_{\nu} \quad(-\infty<r<\infty)
$$

where A_{n}^{r} is defined by the identity

$$
(1-x)^{-r-1}=\sum_{n=0}^{\infty} A_{n}^{r} x^{n} \quad(|x|<1)
$$

and in particular $a_{n}=s_{n}^{-1}$.
Theorem 1. Let $\left.-1 \leqq b,{ }^{*}\right) b<p-1<\gamma<\beta$, and $\delta=\frac{p-1-b}{\beta-p+1}(\beta-\gamma)$. If

$$
\begin{gather*}
\sum_{\nu=1}^{n}\left|s_{\nu}^{\beta}\right|=o\left(n^{\gamma+1}\right) \tag{1.1}\\
\sum_{\nu=n}^{2 n}\left(\left|s_{\nu}^{b}\right|-s_{\nu}^{b}\right)=O\left(n^{b+\delta+1}\right) \tag{1.2}
\end{gather*}
$$

as $n \rightarrow \infty$, then $\sum a_{\nu}$ is summable (R, p) to zero.
In the case $b=-1$ we have the following corollary.

[^0]
[^0]: *) We could remove the restriction $b \geqq-1$ in this theorem by the argument used in Yano [5].

