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4. Idempoterts of rank 1. This section is devoted to note several
fundamental statements concerning the idempotents in an algebra, which
we shall need in what follows.

LEMMA 1.) Let p be an idempotent in an algebra E. If Ep
(resp. pE) is a minimal left (resp. minimal right) ideal of E, then
pEp is a division algebra.

Proof. It will suffice to prove the lemma in the case of Ep under
the assumption that pEp {0}. Since p is an idempotent, p is the
identity in the algebra pEp. Let x be a non-zero element in pEp;
hen Ex contains px=x, so that Ex=Ep since Ep is a minimal left
ideal. It follows that pEx--pEp, and hence we have pEpx--pEp.
Therefore the element x has a left inverse in pEp.

LEMMA 2. Let E be an algebra satisfying the condition (ii),)

and let p be a non-zero idempotent in E. If pEp is a division
algebra, then Ep is a minimal left ideal and pE is a minimal right
ideal of E.

Proof. Let I be a proper non-zero left ideal contained in Ep, and
a be a non-zero element in L Then by the condition (ii) we can find
an element uE such that puaO. Since pua is contained in the
division algebra pEp, it has an inverse pxp in pEp; then pxpua--p.
Therefore the left ideal I contains the element p, and so I coincides
with Ep contrary to the assumption. Similarly we can prove that pE
is a minimal right ideal.

LEMMA 3. Let p be an idempotent in a Hausdorff topological
algebra E, and A be a closed subset of E. If Ap (resp. pA) is con-
tained in A, then the set Ap (resp. pA) is closed.

Proof. it will suffice to show that Ap is closed, under the assump-
tion that Ap A. Let be a filter on the set Ap which converges
to an element aA. Then, since each element of the filter is a sub-
set of the set Ap, we have p={Bp; Be}=. On the other hand,
because of the continuity of the ring multiplication, the filter base p
converges to ap, and so we have a---ap since E is a Hausdorff space.

1) This lemma is essentially known, but we give a proof for the sake of com-
pleteness.

2) Cf. S. Kasahara: Representation of some topological algebras. I, Proc. Japan
Acad., 34, 355-360 (1958).


