15. Some Properties of F-spaces

By Takesi ISIWATA Tokyo Gakugei University, Tokyo

(Comm. by K. KUNUGI, M.J.A., Feb. 12, 1959)

 X^{10} is called an *F*-space provided for any $f \in C(X)$, $P(f) = \{x; f(x) > 0\}$ and $N(f) = \{x; f(x) < 0\}$ are completely separated. X has the F_{σ} -property if the closure of any F_{σ} -open subset of X is open. X has the E_{σ} -property if any $f \in B(U)$ has a continuous extension over X where U is any F_{σ} -open subset of X. Gillman and Henriksen [1] have proved the interest results on F-spaces; for instance, i) X is σ -complete if and only if for any $f \in C(X)$, $\overline{P(f)}$ is open; ii) X is an F-space if and only if any $f \in B(X-N)$ has a continuous extension over X where N is any Z-set of X. In general, 1) if X has the F_{σ} -property, X is σ -complete [3] and 2) if X has the E_{σ} -property, X is an F-space. If X is normal the converses of the above two statements are true [3].

In §1 we shall study the relations between a given space X and its Čech compactification $(=\beta X)$ concerning the F_{σ} -prop., E_{σ} -prop., σ completeness, or the property of being an F-space. In §2 we shall consider some questions arising in connection with the theorems in §1.

1. Theorem 1. The following conditions are equivalent for any space X: 1) X has the F_{σ} -property; 2) any subspace Y of βX containing X as a proper subset has the F_{σ} -property; 3) any proper F_{σ} -open subset of X has the F_{σ} -property.

Proof. $(1 \rightarrow 2)$. Let V be any F_{σ} -open subset of Y. $U = V \cap X$ is also F_{σ} -open in X and hence $\overline{U}(\operatorname{in} X)$ is open in X. On the other hand, $\beta X = \beta(\overline{U}(\operatorname{in} X)) \cup \beta(X - \overline{U}(\operatorname{in} X)), \ \beta(\overline{U}(\operatorname{in} X)) \cap \beta(X - \overline{U}(\operatorname{in} X)) = \theta$ and $\overline{U}(\operatorname{in} \beta X) = \beta(\overline{U}(\operatorname{in} X))$. Since X is dense in Y and $U = X \cap V$ and V is open in Y, we have $\overline{V}(\operatorname{in} Y) = \overline{U}(\operatorname{in} Y) = \overline{U}(\operatorname{in} \beta X) \cap Y$ and hence $\overline{V}(\operatorname{in} Y)$ is open.

 $(2 \rightarrow 3)$. Let U be a proper F_{σ} -open subset of X and let V be F_{σ} -open in U. V is F_{σ} -open in X and we put $Y = (\beta X - (\overline{V}(\ln \beta X) - V)) \cup X$. Since V is F_{σ} -open in Y and Y has the F_{σ} -property, $\overline{V}(\ln Y)$ is open in Y and hence $\overline{V}(\ln U) = \overline{V}(\ln Y) \cap U$ is open in U.

 $(3 \rightarrow 1)$. Let U be any proper F_{σ} -open subset of X. Suppose that $\overline{U} \neq X$ and $a \in X - \overline{U}$. There exists $f \in B(X)$ such that f(a)=0 and

¹⁾ A space X considered here is always a completely regular T_1 -space. The functions are assumed to be real-valued and C(X)(B(X)) denotes the totality of (bounded) continuous functions defined on X.