83. A Remark on Monotone Solutions of Differential Equations

By Kiyoshi Iséki

Kobe University

(Comm. by K. KUNUGI, M.J.A., July 13, 1959)

In this Note, we shall consider a system of differential equations:

(1)
$$\frac{dx}{dt} = P(t)x + Q(t)$$

where, $x = (x_1, x_2, \dots, x_n)$ is a column vector function of t, and $P(t) = (P_{ij}(t)), Q(t) = (Q_{ij}(t))$ are $n \times n$ -matrices. Suppose that these functions of t are defined in some interval $[a, +\infty)$ (a is finite or $-\infty$). Any solution

$$x(t) = egin{pmatrix} x_1(t) \ x_2(t) \ dots \ x_n(t) \end{pmatrix}$$

of the system (1) is called to be monotone for $t \to \infty$, if for some T, every function $x_i(t)$ is monotone on the interval $[T, +\infty)$. A matrix function $P(t)=(P_{ij}(t))$ is said to be *integrable on an interval* $[a, +\infty)$, if every function $|P_{ij}(t)|$ is integrable on the interval.

Then we have the following

Proposition. If matrices P(t) and Q(t) of the differential equation (1) are integrable on an interval $[a, +\infty)$, then any monotone solution x(t) for $t \rightarrow +\infty$ is bounded on the interval and $\lim_{t \rightarrow \infty} x(t)$ exists.

Such a type of Proposition was discussed by B. P. Demidobitch [1]. Applying his method, we shall prove Proposition directly.

To prove Proposition, we shall suppose that n=1 for simplicity. Let x(t) be a monotone solution of (1) for an interval $[a, +\infty)$. Since P(t), Q(t) are integrable, for any $\varepsilon > 0$ $(1 > \varepsilon)$, there is a large number T, and then we have

$$\int_{t_1}^{t_2} |P(t)| dt < \varepsilon, \quad \int_{t_1}^{t_2} |Q(t)| dt < \varepsilon$$

for $t_1, t_2 \ge T$. From (1), we can write

$$x(t) = x(T) + \int_{T}^{t} P(u)x(u)du + \int_{T}^{t} Q(u)du.$$

By the mean theorem of integral calculus, there is an α such that $T \leq \alpha \leq t$ and

$$x(t) = x(T) + x(T) \int_{T}^{\alpha} P(u) du + x(t) \int_{\alpha}^{t} P(u) du + \int_{T}^{t} Q(u) du.$$