75. On Ring Homomorphisms of a Ring of Continuous Functions. II

By Takesi ISIWATA Tokyo Gakugei University, Tokyo (Comm. by K. KUNUGI, M.J.A., July 13, 1959)

Anderson and Blair [1] have investigated representations of certain rings as subalgebras of C(X).¹⁾ In this paper, we shall in §1 also consider such representations of certain rings and we shall improve Theorems 2.2 and 3.2 in [1] using results obtained in [2,3]. From results in §1, we obtain in §2 new characterizations of locally Qcomplete spaces, Q-spaces, locally compact spaces and compact spaces.

Let R be a ring of all real numbers. A subset A of C(X) is said, according to $\lceil 1 \rceil$, to be weakly pseudoregular if X has a subbase \mathfrak{l} of open sets such that for any $U \in \mathfrak{l}$ and $x \in U$ there are an $\alpha > 0$ (in R) and an f in A such that $|f(x)-f(y)| > \alpha$ for $y \notin U$. A is pseudoregular²⁾ if for any $x \in X$ and any open neighborhood U of x, there is an $f \in A$ such that f(x) = 0 and $f(y) \ge 1$ for $y \notin U$. An element f in A is said to be strictly positive if there exists an $\alpha > 0$ (in R) such that $f(x) \ge \alpha$ for every $x \in X$. Next suppose that A is an arbitrary algebra over R. A maximal ideal M of A is said to be real if the residue class algebra A/M is isomorphic to R. \Re_A denotes the totality of real maximal ideals of A. An element f in A is said to be strictly positive if there exists $\alpha > 0$ (in R) such that $M(f) \ge \alpha$ for every $M \in \mathfrak{N}_A$ where $M(f) = f \mod M$. Let us put $S(f) = \{M(f); M \in \mathfrak{R}_A\}$ which is called a spectrum of f. If A is a subset of C(X), and for any $M \in \Re_A$, there is a unique point x in X such that $M = M_x = \{f; f(x)\}$ =0 then A is said to be point-determining; in other words, A has the property (H^*) in [3], that is, any ring homomorphism φ of A onto R is a point ring homomorphism φ_x and $x \neq y$ implies $\varphi_x \neq \varphi_y$.

1. Now suppose that A is a ring such that $\Re_A \neq 0$ and $\bigcap_{M \in \Re_A} M = \theta$ (written $\Re_A = \theta$). We define a function f^* an \Re_A by $f^*(M) = M(f)$, moreover, introduce a weak topology on \Re_A , that is, we take as a subbase of open sets of \Re_A , $\mathfrak{ll} = \{U_M(f, \varepsilon); f \in A, \varepsilon \in R, \varepsilon > 0\}$ where $U_M(f, \varepsilon) = \{N; |M(f) - N(f)| < \varepsilon, N \in \Re_A\}$. Then, by [1, Theorem 2.1], for any given X, a weakly pseudoregular point-determining subring A of C(X)

¹⁾ In the following, X is always a completely regular T_1 -space and other terminologies used here, for instance C(X), ring homomorphisms and local Q-completeness, are the same as in [2, 3].

²⁾ The definition of pseudoregular in [1] requires moreover that A contains a constant function e which takes value 1 on X.