73. On the Unique Factorization Theorem in Regular Local Rings

By Masao Narita

International Christian University, Mitaka, Tokyo (Comm. by Z. Suetuna, M.J.A., July 13, 1959)

Recently Auslander and Buchsbaum [3] have proved that every regular local ring is a unique factorization ring. This proof depends upon the following result of Nagata [1]: If every regular local ring of dimension 3 is a unique factorization ring, then so is every regular local ring of any dimension (see [1, pp. 411-413]).

This theorem was proved independently by Zariski [2].

Nagata proved this theorem by using homological method and ideas. The purpose of this paper is to prove anew this theorem by a purely ideal-theoretic method in a simpler way than in [1] and [2].

Let \mathfrak{O} be an n dimensional regular local ring.

Let $\mathfrak{m}=\mathfrak{D}u_1+\mathfrak{D}u_2+\cdots+\mathfrak{D}u_n$ be the maximal ideal of \mathfrak{D} , and $\mathfrak{D}'=\mathfrak{D}[X_1,X_2,\cdots,X_n]$ be the polynomial ring over \mathfrak{D} . Then $\mathfrak{m}'=\mathfrak{m}[X_1,X_2,\cdots,X_n]$ is a prime ideal of \mathfrak{D}' . Let \mathfrak{D}^* be the quotient ring of \mathfrak{D}' with respect to \mathfrak{m}' , then \mathfrak{D}^* will be n dimensional regular local ring, and $\mathfrak{m}^*=\mathfrak{D}^*u_1+\mathfrak{D}^*u_2+\cdots+\mathfrak{D}^*u_n$ will be the maximal ideal of \mathfrak{D}^* . In the following, we shall use \mathfrak{a} , \mathfrak{b} , \mathfrak{p} , \mathfrak{q} , etc. to denote ideals in \mathfrak{D} , and \mathfrak{a}^* , \mathfrak{b}^* , \mathfrak{p}^* , \mathfrak{q}^* , etc. to denote ideals in \mathfrak{D}^* .

We note the following well-known lemma without proof (see, for example, [4]).

Lemma 1. We have

- (i) $\mathfrak{O}_{\sim} \mathfrak{O}^*\mathfrak{a} = \mathfrak{a}$.
- (ii) If \mathfrak{p} is a prime ideal in \mathfrak{D} , then so is $\mathfrak{D}^*\mathfrak{p}$ in \mathfrak{D}^* , and if \mathfrak{q} is \mathfrak{p} -primary, then $\mathfrak{D}^*\mathfrak{q}$ is $\mathfrak{D}^*\mathfrak{p}$ -primary. Moreover rank \mathfrak{p} =rank $\mathfrak{D}^*\mathfrak{p}$.

A less familiar lemma is:

Lemma 2. Let $v^* = u_1 X_1 + u_2 X_2 + \cdots + u_n X_n$, then v^* is an element of a minimal base of m^* . Moreover, $\mathfrak{D}^*\mathfrak{a} \ni v^*$ holds if and only if $\mathfrak{a} = \mathfrak{m}$.

Proof. From $\mathfrak{m}^* = \mathfrak{O}^* u_1 + \mathfrak{O}^* u_2 + \cdots + \mathfrak{O}^* u_n$ follows the equation $\mathfrak{m}^* = \mathfrak{O}^* v^* + \mathfrak{O}^* u_2 + \cdots + \mathfrak{O}^* u_n$. Therefore v^* is an element of a minimal base of \mathfrak{m}^* .

Since every element of $\mathbb{O}^*\mathfrak{a}$ can be expressed in the form P(x)/Q(x), $P(x) \in \mathfrak{a}[X_1, X_2, \cdots, X_n]$, $Q(x) \notin \mathfrak{m}[X_1, X_2, \cdots, X_n]$, $\mathbb{O}^*\mathfrak{a} \ni v^*$ implies that $\mathfrak{a}[X_1, X_2, \cdots, X_n] \ni v^*$, this means $\mathfrak{a} \ni u_1, u_2, \cdots, u_n$, and thereby completes the proof.