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Recently Auslander and Buchsbaum 3 have proved that every
regular local ring is a unique factorization ring. This proof depends
upon the following result of Nagata _1" If every vegulav local ving

of dimension 3 is a unique fac$oriza$ion ring, then so is every
regular local ring of any dimension (see 1, pp. 411-413).

This theorem was proed independently by Zariski 2.
Nagata proved this theorem by using homological method and

ideas. The purpose of this paper is to prove anew this theorem by
a purely ideal-theoretic method in a simpler way than in 1 and 2.

Let (C) be an n dimensional regular local ring.
Let m (C)u,-+-(C)u.+ +(C)u be the maximal ideal of (C), and

(C)’--(C)X,X, ...,X be the polynomial ring over (C). Then m’
=mX, X,...,X is a prime ideal of (C)’. Let (C)* be the quotient
ring of (C)’ with respect to m’, then * will be n dimensional regular
local ring, and m*-(C)*u+(C)*u+...+(C)*u will be the maximal
ideal of (C)*. In the following, we shall use , 5, p, q, etc. to denote
ideals in (C), and * 13", t* *q etc. to denote ideals in (C)*.

We note the following well-known lemma without proof (see, for
example, 4).

Lemma 1. We have

*--.
(ii) If p is a prime ideal in (C),then so is (C)*p in (C)*, and if

q is p-primary, then (C)*q is (C)*p-primary. Moreover rank
p--rank (C)*.

A less familiar lemma is:
Lemma 2. Let v*--uX+uX+.. +uX, then v* is an element

of a minimal base of m*. Moreover, (C)*av* holds if and only if

Proof. From m*-(C)*u+(C)*u+...+(C)*u follows the equation
m*-*v*+*u+... +*u. Therefore v* is an element o a mini-
mal base of m*.

Since every element of (C)* can be expressed in the form P(x)/Q(x),
P()eX,, X.,..., X, Q()mX, X, ..., X, (C)*v* implies that
X, X,..., X_ v*, this means u, u, ..., u, and thereby com-
pletes the proof.


