105. A Unique Continuation Theorem of a Parabolic Differential Equation

By Taira Shirota

Osaka University
(Comm. by K. Kunugi, m.J.A., Oct. 12, 1959)

1. Introduction. Let G be a convex domain of the euclidean $n+1$-space $R_{t, x}\left(-\infty<t<+\infty,-\infty<x_{i}<+\infty(i=1,2, \cdots, n)\right.$, containing a curve $C:\left\{\left(t, x_{i}(t)\right) \mid t \in[a, b]\right\}$, where $x_{i}(t) \in C^{2}[a, b]$.

Consider real solutions u of an inequality of the following kind:

$$
\begin{equation*}
\left|\frac{\partial u(t, x)}{\hat{\partial} t}-a_{i j}(t, x) \frac{\partial^{2} u(t, x)}{\partial x_{i} \partial x_{j}}\right| \leqq M\left\{\sum_{i}^{n}\left|\frac{\partial u(t, x)}{\partial x_{i}}\right|+|u(t, x)|\right\} . \tag{1.1}
\end{equation*}
$$

Here $\left(\left(a_{i j}(t, x)\right)\right)$ denotes a positive definite, symmetric matrix of real valued functions $a_{i j}(t, x) \in C^{2}(G)$, and M a constant.

Our purpose in this note is to prove the following theorem for solutions of (1.1).

Theorem. If u is a solution of (1.1) in the convex domain G and if for any $\alpha>0$, then u vanishes identically in the horizontal component.

The method is based upon the ideas of H. O. Cordes [2] and E. Heinz [3]. The tools used are all elementary, but our proof is somewhat complicated.
2. The Cordes' transformation. Assuming $[a, b] \supset[-\varepsilon, 1+\varepsilon]$ $(\varepsilon>0)$, let $\AA(t)$ be the positive square root of the matrix $A(t)=$ $\left(\left(a_{i j}(t, x(t))\right)\right)$. Let

$$
x-x(t)=\AA(t) \widetilde{x} \quad \text { for } \quad t \in[-\varepsilon, 1+\varepsilon] \text {, }
$$

then we may assume that for some $R_{1}>0$,
a) $a_{i k}(t, \tilde{x}) \in C^{2}\left([-\varepsilon, 1+\varepsilon] \times D_{R_{1}}\right) \quad\left(D_{R_{1}}=\left\{x| | x \mid \leqq R_{1}\right\}\right)$,
b) $a_{i k}(t, 0)=\delta_{i k}$,
c) there are positive numbers C_{1} and C_{2} such that for any real vector ($\xi_{1}, \xi_{2}, \cdots, \xi_{n}$)

$$
C_{1} \sum_{1}^{n} \xi_{i}^{2} \leqq \sum a_{i j}(t, \widetilde{x}) \xi_{i} \xi_{j} \leqq C_{2} \sum_{1}^{n} \xi_{i}^{2}
$$

From (a), (b) and (c) we see the following
Lemma 1. For some $R_{2}, \widetilde{R}_{2}<R_{1}$ there is a topological transtormation from $[-\varepsilon, 1+\varepsilon] \times D_{R_{2}}$ onto $[-\varepsilon, 1+\varepsilon] \times D_{\tilde{R}_{2}}$:

$$
\widetilde{y}=\widetilde{y}(t, \widetilde{x}), t=t
$$

such that it satisfies the following conditions:

