105. A Unique Continuation Theorem of a Parabolic Differential Equation

By Taira Shirota

Osaka University

(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1959)

1. Introduction. Let G be a convex domain of the euclidean n+1-space $R_{t,x}$ $(-\infty < t < +\infty, -\infty < x_i < +\infty$ $(i=1, 2, \dots, n))$, containing a curve C: $\{(t, x_i(t)) | t \in [a, b]\}$, where $x_i(t) \in C^2[a, b]$.

Consider real solutions u of an inequality of the following kind:

(1.1)
$$\left|\frac{\partial u(t,x)}{\partial t} - a_{ij}(t,x)\frac{\partial^2 u(t,x)}{\partial x_i \partial x_j}\right| \leq M \left\{\sum_{1}^n \left|\frac{\partial u(t,x)}{\partial x_i}\right| + |u(t,x)|\right\}.$$

Here $((a_{ij}(t, x)))$ denotes a positive definite, symmetric matrix of real valued functions $a_{ij}(t, x) \in C^2(G)$, and M a constant.

Our purpose in this note is to prove the following theorem for solutions of (1.1).

Theorem. If u is a solution of (1.1) in the convex domain G and if for any $\alpha > 0$,

(1.2)
$$\lim_{r \to 0} \max_{\substack{|x-x(t)|=r \\ t \in [a,b]}} \left\{ |u(t,x)|, \left| \frac{\partial u}{\partial t}(t,x) \right|, \left| \frac{\partial u}{\partial x_i}(t,x) \right|, \left| \frac{\partial^2 u}{\partial x_i \partial x_j} \right| \right\} |x-x(t)|^{-\alpha} = 0$$

then u vanishes identically in the horizontal component.

The method is based upon the ideas of H. O. Cordes [2] and E. Heinz [3]. The tools used are all elementary, but our proof is somewhat complicated.

2. The Cordes' transformation. Assuming $[a, b] \supset [-\varepsilon, 1+\varepsilon]$ $(\varepsilon > 0)$, let $\mathring{A}(t)$ be the positive square root of the matrix $A(t) = ((a_{ij}(t, x(t))))$. Let

$$x-x(t) = \mathring{A}(t)\widetilde{x}$$
 for $t \in [-\varepsilon, 1+\varepsilon]$,

then we may assume that for some $R_1 > 0$,

a)
$$a_{ik}(t, \tilde{x}) \in C^2([-\varepsilon, 1+\varepsilon] \times D_{R_1}) \quad (D_{R_1} = \{x \mid |x| \leq R_1\}),$$

b) $a_{ik}(t,0)=\delta_{ik}$,

c) there are positive numbers C_1 and C_2 such that for any real vector $(\xi_1, \xi_2, \dots, \xi_n)$

$$C_1 \sum_{i=1}^n \xi_i^2 \leq \sum a_{ij}(t, \widetilde{x}) \xi_i \xi_j \leq C_2 \sum_{i=1}^n \xi_i^2.$$

From (a), (b) and (c) we see the following

Lemma 1. For some R_2 , $\tilde{R}_2 < R_1$ there is a topological transformation from $[-\varepsilon, 1+\varepsilon] \times D_{R_2}$ onto $[-\varepsilon, 1+\varepsilon] \times D_{\tilde{R}_2}$:

$$\tilde{y} = \tilde{y}(t, \tilde{x}), t = t$$

such that it satisfies the following conditions: