135. Mappings and Pseudo-compact Spaces

By Takesi ISIWATA

Tokyo Gakugei University, Tokyo (Comm. by K. KUNUGI, M.J.A., Dec. 12, 1959)

Let f be a mapping of a topological space X onto another topological space Y: then, by Whyburn [1, 2], Stone [3], Morita [4-6], Hanai [6-8], McDougle [9, 10] and others, it is known that some properties of f, for instance closedness, openness and quasi-compactness, give the interest relations between X and Y.

In this paper, we shall first prove that a space X is pseudo-compact if and only if any continuous mapping of X onto a weakly separable T_2 -space is always a P_0 -mapping. Next we shall show, for a continuous mapping f of a pseudo-compact space X onto a weakly separable T_2 space, that 1) f is quasi-compact if and only if $f(\mathfrak{B}U) = \mathfrak{B}f(U)$ for any open inverse subset U where $\mathfrak{B}U$ denotes the boundary of U, and 2) if $\mathfrak{B}f^{-1}(y)$ is compact for every $y \in Y$ and X is locally compact, then f is always closed and Y is locally compact. Finally we give some characterization of compact spaces.

In the following, we assume that any mapping is always continuous. Let f be a mapping of X onto Y where X and Y are topological spaces; f is a P_1 (or P_0)-mapping provided that whenever $y \in Y$ and U is any neighborhood of $f^{-1}(y)$, $y \in \operatorname{Int} f(U)$ (or $y \in \operatorname{Int} f(\overline{U})$). fis a P_2 -mapping if for each $y \in Y$, there is a compact subset C of $f^{-1}(y)$ such that $\operatorname{Int} f(U) \ni y$ for every open subset U containing C (the definitions of both P_1 and P_2 -mappings are due to McDougle [9]). fis called to have a compact trace property [2] if any point y of Yis interior of the image of some compact subset of X. The following implications are obvious: $(open \to P_1)$, $(closed \to P_1 \to quasi-compact)$ and $(P_2 \to P_1 \to P_0)$.

1. Characterizations of pseudo-compact spaces. The following lemma is useful.

Lemma 1. Let f be a mapping of a topological space X onto a T_2 -space Y. If $\{y_n\} \rightarrow y$ in Y and x_n is any point contained in $f^{-1}(y_n)$, then $\overline{\{x_n\}} - \{x_n\} \ni x$ implies f(x) = y.

Theorem 1. The following conditions are equivalent for a complete regular T_1 -space X;

- 1) X is pseudo-compact.
- 2) Any mapping of X onto a weakly separable T_2 -space is P_0 .
- 3) If f is a mapping of X onto a weakly separable T_2 -space Y, then