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7. On the condition (ii). It is easy to see that a semi-simple
algebra satisfies the condition (.)" but not the condition (ii)" in general.
Let E be an algebra, and let u eE; then we denote by (u)r the right
ideal generated by u, that is, the set of all elements u-ux, where
runs over the scalar field and x over the whole E; we write (u) the
left ideal generated by u.

LEMMA 1. For a semi-simple algebra E, each one of the following
conditions is equivalent to the condition (ii):

(1) For any two non-zero elements u, veE, we have uEEv
#{0}.

(2) For any two non-zero elements u, veE, we have (U)r(V)
#{0}.

Proof. It is clear that the condition (ii) implies (1) and (1) implies
(2). To prove the implication (2)->(ii), let us suppose that an algebra
E satisfies the condition (2) and not (ii). Then there exist two non-
zero elements u, vE such that uxv--O for every xE. Since E is
semi-simple, we can find an element aeE with ua 0, and so by (2),
there exists a non-zero element w--ua+uab=flv+cv (ua)r (v)t, where
a, fl are two numbers and b, c E. Now, if w--0, then for any number
and any x eE, we have

w+xww--xw+w +wxw+xw +xwxw= 0,
since wxw=(aua+uab)x(flv+cv)=O; it follows that w belongs to the
radical of E, and so w=0, which is a contradiction. Thus w=afluav
+auacv+fluabv+uabcvO. But this is absurd since uEv={O}.

LEMMA 2. For an algebra E with a minimal left ideal L such
that L{O}, each one of the following conditions is equivalent to the
condition (ii):

(1) For any non-zero element u eE, we have uEL {O}.
(2) For any non-zero element u eE, we have uL {O}.
Proof. Since L[0}, we can find an idempotent pE such that

L=Ep. The implication (ii)-(1) is obvious, because uEpuEL.
If there exists a non-zero element uxeuEEp, then we have ux=ap
for some ae E, and hence 0 ap--uxp uL, proving the implication
(1)-+(2). Now suppose that the condition (2) is satisfied, and let u, v
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