134. Representation of Some Topological Algebras. III

By Shouro KASAHARA Kobe University (Comm. by K. KUNUGI, M.J.A., Dec. 12, 1959)

7. On the condition (ii). It is easy to see that a semi-simple algebra satisfies the condition $(*)^{1}$ but not the condition $(ii)^{1}$ in general. Let E be an algebra, and let $u \in E$; then we denote by $(u)_r$ the right ideal generated by u, that is, the set of all elements $\lambda u + ux$, where λ runs over the scalar field and x over the whole E; we write $(u)_l$ the left ideal generated by u.

LEMMA 1. For a semi-simple algebra E, each one of the following conditions is equivalent to the condition (ii):

(1) For any two non-zero elements $u, v \in E$, we have $uE \subset Ev \neq \{0\}$.

(2) For any two non-zero elements $u, v \in E$, we have $(u)_r \frown (v)_l \neq \{0\}$.

Proof. It is clear that the condition (ii) implies (1) and (1) implies (2). To prove the implication $(2) \rightarrow (ii)$, let us suppose that an algebra E satisfies the condition (2) and not (ii). Then there exist two nonzero elements $u, v \in E$ such that uxv=0 for every $x \in E$. Since E is semi-simple, we can find an element $a \in E$ with $ua \neq 0$, and so by (2), there exists a non-zero element $w = \alpha ua + uab = \beta v + cv \in (ua)_r (v)_i$, where α, β are two numbers and $b, c \in E$. Now, if $w^2 = 0$, then for any number λ and any $x \in E$, we have

 $\lambda w + xw - \lambda w - xw + \lambda^2 w^2 + \lambda w x w + \lambda x w^2 + x w x w = 0,$

since $wxw = (\alpha ua + uab)x(\beta v + cv) = 0$; it follows that w belongs to the radical of E, and so w = 0, which is a contradiction. Thus $w^2 = \alpha \beta uav + \alpha uacv + \beta uabv + uabcv \neq 0$. But this is absurd since $uEv = \{0\}$.

LEMMA 2. For an algebra E with a minimal left ideal L such that $L^2 \neq \{0\}$, each one of the following conditions is equivalent to the condition (ii):

(1) For any non-zero element $u \in E$, we have $uE_{\frown}L \neq \{0\}$.

(2) For any non-zero element $u \in E$, we have $uL \neq \{0\}$.

Proof. Since $L^2 \neq \{0\}$, we can find an idempotent $p \in E$ such that L = Ep. The implication (ii) \rightarrow (1) is obvious, because $uEp \subseteq uE \subset L$. If there exists a non-zero element $ux \in uE \subset Ep$, then we have ux = ap for some $a \in E$, and hence $0 \neq ap = uxp \in uL$, proving the implication (1) \rightarrow (2). Now suppose that the condition (2) is satisfied, and let u, v

¹⁾ Cf. S. Kasahara: Representation of some topological algebras. I, II, Proc. Japan Acad., **34**, 355-360 (1958); **35**, 89-94 (1959).